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The book ie dedicated to the presentation
of methode of calculation of eleetrical capaci-
tance, and it contains a summary of calculation
formulas, tablee, and graphs neceseary for the
determination of the capaeitance of conductors
of various form. .

The book is intended for engineers and
gcientists engaged in electromagnetic calcula-
tiong; it can be useful also to studente and
to graduate students of electrical epecialities.
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PREFACE

The necessity for the calculation of capacitance (or parameters
analogous to 1t - electrical magnetic, and thermal conductivity)
appears with the designing of various electroautomatic and radilo
engineering devices, the calculation of telephonic, telegraphic, and
television cables, of transmission lines and communication lines,
separate elements of television, telemetering and electrometric
apparatus, calculation of grounding electrodes, of various magnetic
systems, and with the solution of a whole series of other problens
which must be encountered by engineers and scientific workers of
various speclalties.

Because of this the problems of calculation of capacitance
and parameters analogous to 1t have for several decades been con-
sidered in physical, radlo engineering, and electrical literature,
and the bilbliography of works dedicated to this problem published at
the present ti.e 1s vast.

Unfortunately, the vast majority of these works are devoted to
giving an account of only individual special problems of calculation
of electrical capacitance. As for the very few works in which
attempts were made to give a systematic account of the problems of
calculation of capacitance, they are either too antiquated,! or

'0rlich E., Kapazitét und Induktivitdt; 1909.

FTD-MT-24-269-70 vii
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they concern (similar to the book of R. Briiderlink!) only conductors
of a certaln type.

In connection with this there has long been a need for publica-
tion of a reference book on the calculation of capacity reflecting the
contemporary state of this problem and contal..ing both the fundamental
methods of calculation of capacity and ready formulas, tables; and
curves which refer to the most important particular cases. This

book, proposed for the readers' attention, 1s dedicated to the solu-
tion of thils problem.

In developing the plan of the book, the authors in many respects
likened it to the plan of the known reference book of P, L,
Kalantarov and L. A. Tseytlin on calculation of inductance, published
by the State Scientific and Technical Power-Engineering Publishing
House in 1955. The authors feel that this will not only be con-
venient for the readers of thls or other books, but also will create
prerequlsites for a uniform account in many respects of connected
problems of calculation of capacitance and inductance in the future.

Following such a plan, the authors broke up the fundamental
materlal of the book into two parts, in the first of which an account
i1s given of the methods of the calculation of capacitance, and in
the second of which are given formulas, tables, graphs necessary for
calculation of capacitance in various cases.

One of the things concerning prohlems on calculation of electrical
capacltance 1s that strict methods of thelr solution are essentially
Inseparable from methods of calculation of the electrostatic fileld of
the system of charged bodles belng consldered. Along with thils during
the calculation of capacitance approximation methods are used, not
requiring knowledge of the electrostatic fleld in the space surround-
Ing the conductors, also auxillary methods which allow converting

the system of conductors conslidered to a form more convenlent for
calculation.

!Briiderlink R., Induktivitdt und Kapdzritdt der
Starkstromfreileitungen; 1954,

FTDH=MT-24-269~T70 viii

b b v A0

s e At




TR

Taking into account that the methods of calculation of electro-
ctatic fields in the majority are well illuminated in electrical
engineering and physicomathematical literature,l in the first part
of the book dnly the less known approximation and auxiliary methods
used in calculating capacitance are stated.

The account of each of the methods of calculation of capacitance
is accompanied by i1llustrations which should help the reader master
not only the idea of the method, but also the characteristics of 1its
application to the solution of concrete practical problems.

In the second, reference, part of the book, the authors strove
as fully as possible to present the data necessary for calculation
of capacitance of conductors of the most typical form, without facing
the problem of summarizing all results published up to the present
time (within the confines of one book this would be, apparently,
generally impossible). The application of reference data is

illustrated by 1llustrations of a calculation reduced to numerical
results. '

In concluslion the authors express sincere gratitude to the
reviewer, Doctor of Technical Sciences L. A. Tseytlin and the
scientific editor, Candidate of Technical Sciences R. A. Pavlovskiy,
the participation of whom in the consideration and preparation of the
present book went far beyond the scope of their formal responsibilities.

The authors hope that this book will be useful to a wide circle
of engineers and scientific workers engaged in electromagnetic
calculations.

Comments and remarks on the content of the book should be sent to:
Leningrad, USSR, Leningrad, D-41, Marsovo pole, d. 1, Leninpradskoye
otdeleniye izdatel'stva "Energiya."

Authors

'See, for example, V. Smayt, Elektrostatika i elektrodinamika
(Electrostatics and Electrodynamics), IL, 1954, N. N. Mirolyubov et al.,
Metody rascheta elektrostaticheskikh poley (Methods of Calculation of
Electrostatic Flelds), Vysshaya shkola, 1963.
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INTRODUCTION

V-1, Basgic Definitions

Between charges and potentials in any system of conductors
that create an electrostatic fleld, a one-to-one linear relatlon
exlsts, for the expression of whlch the concept of electrical
capacitance or simply capacitance 1s introduced.’

Depending on the type of system of conductors considered, the
capacltance of a solitary conductor, the capacitance between two
conductors and the capacitance 1n a system of many cunductors are
distinguiched.

The capacitance of a eolitary conductor 1s a scalar quantity
characterizing the abllity of the conductor to accumulate an
electrical charge and 1s equal to the ratio of the charge of the
conductor to 1ts potential on the assumptlion that all other loaded
conductors are an infinite distance away.

1f the charge of a solitary conductor 1s designated @, and its
potentlial ¥V, then 1n accordance with the given definition, the

'Here and subsequently, 1f nothing 1s said to the contrary, it 1is
assumed that the specific inductive capacitance of the medium surround-
ing, the conductors does not depend on electrostatic fileld strength,
all the conductors being considered are in a finite region of space,
and that the potentlal at an infinitely distant poi=nt is equal to
aero.,

FTD-MT-24-269-70 X
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capacitance of thils conductor will be expressed by the formula

C=2. (Vv-1)
The capacitance between two conductore 1s a scalar quantity
equal to the absolute value of the ratio of the electrical charge
of one of the conductors to the difference in their potentials on
condition that these conductors have charges 1dentical in amount,
but opposite in sign and that all other loaded conductors are
infinitely far away.

If the charges of the conductors are equal to *¢@, and their
potentlals have quantity Vl and V2, then 1n accordance with the
given definition, the capaclitance between these conductors can be
expressed by the formula

é"lv.f-v;" (v-2)

An arrangement of two conductors separated by a dilelectric
(plates) intended for utilization of capacltance between them 1s
called a capacitor; therefore, the capacltance between two conductors
1s sometimes called also ecapacitor capacitance.

The gerneralization of introduced concepts in the case of a
system with a random finite number of conductors is a concept about
intrinsic and mutual partial capacitances.

The conductor's intrinete partial capacitance that enters the
system of many bodles 18 a scalar quantity equal to the ratio of
the charge of this conductor to 1ts potential on the assumption that
all the conductors of the system (including the one being considered)
have 1dentical potential.

Mvtual partial capacitance between two conductors that enter
the system of many bodles 1s a scalar quantity equal to the ratio
of the charge of one of the conductors belng considered to the

FTD-MT-24-269-70 x1




potential of another on the assumption that all conductors, except
the latter, have potential equal to zero.

In accordance with the introduced definitions the relation
between charges and potentials in a system of »n conductors is expressed
by the followlng equations:

.Qn=cuvx+cu(vx—vg)+ cer +Cu(i=V,) -

Qe =Cu(Va—Vi)+CuVa+ ... +Cuu(Va—Vo) (V=3)

e & & e & @ o e & 8 3 8 & & & B " S " s 9 s

Qu= c.-al(vl_vl)+ Cnl(vn_v!)"' .. '+cnuvm .

where Qi and Vi are the charge and potential of the Z-th conductor
(2 =1, 2, veoy n); C:z is the intrinsic partial capacitance of the
i=-th conductor (¢ =1, 2, ..., n); Cik is the mutual partial capaci-
tance tetween the i-th and k-th conductors (Z, k = 1, 2, ..., n;

i # R), in this case 1t 1is possible to show that Cih = Chpiv

The distribution of concepts of intrinsic and mutual partial
capacitances 1s to a considerable extent arbitrary in nature.
Really any system of n conductors which occuples a finite volume can
be conditionally considered a system of n + 1 conductors, where
(n + 1)~th conductor is a sphere of infinite radium having zero
potential. 1In a new system the intrinsic partial capacitance of any
conductor [except the (n + 1)-th] can be interpreted as the mutual’
partial capacitance between this conductor and the sphere.

In the particular case when the algebraic sum of the charges of
all conductors of a system is equal to zero (such a system 1s called
electroneutrali), the system of equations (V-3) can be converted to
the form:

Q= c;,(v, -'V,) +.0.+Cy (Vi—=V)

Qa=Cp(Va—Vy) + « oo + Cou(V,—V ) (v-I)

FTD-MT-24-269-70 x1ii
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where C'k is the mutual partial capacitance between the Z-th and
t-th electrndes in an electroneutral system (C! = th)

The quantitles Cék can be defined 1in the same way as Cik’ on
_ the assumption that all conductors, except one, have about the same
§ (but not necessarily equal to zero) potential. 1In general the
; quantities Cék are not equal to the quantities Cik’ but can be
expressed through them.

Equations (V-3) or (V-4) can be converted, grouping on their
right sides terms having a factor value Vk‘ In thilis case the system

of equations connecting charges and potentials of conductors takes
the form:

Ry gherea g G T T A

e,

Q=i+t ..o +heVa
Q=fuVi+buVst ooo +0uVa (V=5)

Qn =BV + ﬂnvs‘l' soe +8ulVe

The quantities entering these equations Bik are called coeffi-
cients of electrostatie induction (intrinsic when ¢ = k and mutual
when ¢ # k), and, as can be shown,

e L

>0, fa=fy<o

Another form of recording of relationships (V-5) is:

V|-‘nd|+¢th+ eor +01Qm
V."‘nQri'luQs-l'u. +“.Q" (v 6)

Vu =@y + Iana+ +oo + 0axQa

''he quantitles a,, entering (V-6) are called potential coeffi-
eciente (intrinsic when ¢ = k and mutual when 7 ¥ k), app > 0,
%k > O Bpp = Bpg < Oppe

E The systems of equations (V-3)-(V-6) are various forms of the
expression of one and the same interrelationship between charges and

adl 7
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potentials of conductors in a system of many bodies. Therefore, the

coefficlents which enter the equations are also interconnected.
Thus

Ca=—hn
Cu=Su+t+tu+t ...+ ... +tha
p..=cu+cﬂ+ LICIN) +cu+ non.+c"

When a system consists of one conductor (n = 1), the concept of
intrinsic partial capacitance coinclides with the concept of the
capacitance of a solitary conductor: CO = 011'

When a system consists of two conductors (n = 2) and is electro-
neutral, the concept of mutual partial capaclitance coincides with the
concept of the capacitance between two conductors: C = CJ In this

12° ‘
case the following relationships are also valid:

FUR—

C = 1€t Ciuln+ CyCy
: Cu+Cx )

Coa pll"ﬂ_.#’
Bt Poat T

Couo— V1 .
oy + oy — 20

As follows from the definitions glven above, the values of the
capacitance of solitary conductors, of the capacitance between two
conductors and of the capacitances in a system of many conductors
are substantially positive and are deflned only by the geometric
parameters of conductors and by the specific inductive capacitance
of the environment. From these determinations it 1s evident also
that the quantities Cos Cs Cips Chps Bik’ Bkk and Cék are quantities
of the same dimension and can be united under the name of capacitive
coefficlents (unlike potential coefficients having reverse dimension).

V-2. General Features of Capacitance t
and Classification of Conductors

A. Formulated helow are some general positions expressing the
dependence of the capacltance of conductors upon thelr geometric

FTD-MT-24-269-70 xiv




parameters and the specific inductive capacitance of the
environment.

l. At = constant value of specific inductive capacitance the
relationships of the zapacitances in two geometrically similar systems
of conductors are equal to the relationship of the characteristic
sizes of these systems:

b @ ¢ o, Ch_ o .
@ iSE

where aI and aII are the characteristic sizes of systems I and II.

When the form of conductors 1s such thot the electrostatic
fields being induced by them can be considered plane-parallel,l the
capacitances (per unit of length of conductors) in geometrically
similar electroneutral systems of two or more bodies? equal between
themselves:

Cl=Cl"; Chi=Ciki . (V-8)

e
where c‘-=_C_'_'_' Cl:.lﬂ'_c.;“_.

"~ "~
(in the direction of their axis).

m=11I, I 1is the length of the conductors

2. At identical geometric parameters of two syetems of con-
ductors in uniform media with varinus specific inductive capacitances,
the relationships of similar quantities characterizing capacitance in

these systems are equal to the ratio of specific inductive capacitances:

G o ch_

oy T e T WE

'Such systems of conductors will subsequently be called plane-
parallel.

2The concept of the capacitance of a solitary conductor in this
instance makes no sense physically.

FTD-MT-24-269-70 Xxv
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.
where €~ and eII are the specific inductive capacitances of the

media in systems I and II.!

This feature is valid also for the case of heterogeneous medla
on condition that the spatial distributions of specific inductive
capacitance in systems I and II are similar. Together with those
given can be shown a number of features of capacitance which are
valid only for individual types of systems united by any general
criteria. One of such criteria is the presence of a boundary of

division of two uniform media with various specific inductive
capacitances.

Let the conductors being considered be located in a medium with
specifie inductive capacltance €, near the boundary of division of
media with speciflic inductive capacltances €, and €s5e Ir €, << €ss
then the boundary of division of media can be considered equipotential,
i.e., it can be considered a surf.:e of an ideal conductor. If
€, >> €5, then the boundary of division can be considered impenetrable
for power lines of an electrostatic field and therefore it can be
considered the surface of a certain conditional medium with zero

specific inductive capacitance. Such a boundary will be subsequently
called impenetrable.

For the capacitance of conductors near an infinitely extended

flat ideally conducting or impenetrable surface, the following basic
relationships are valid.

1. The capacitance between any solitary conductor and an
infinite ideally conducting surface (Fig. V-la) is equal to the
doubled value of the capacitance between this conductor and 1its
mirror reflection relative to the plane (Fig. V-1b).

2. The capacitance of any sollitary conductor 1 near an infinitely
extended flat impenetrable boundary (Fig. V-2a) is equal to the half
of the capacitance of tlie solitary conductor formed by the union of

analogous equations are valid even f;; all remaining cépacitive

coefficients while for potential coefficlents the opposite relation-
ships are fulfilled.

FTH=MT=-24=0F0=70 vird
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Fig' V-l . Fis. V-2Q

conductor 1 with 1ts mirror reflection 2 relative to the plane

B. Subsequently we wlll subdivide conductors according to
theilr geometric form into wires, flat plates, open and closed sheclls.
The latter 1n an electrostatic sense 1s equlvalent to the solid
conductors of the same form, with the exception of those cases wh(n
other charged conductors are inside the shells. In considering wires
we willl assume that their sections are constant in length and the
linear dimensions of the section are considerably less than the
length of wire and the distances to other conductors. In considering
flat plates and shells we will consider that their thickness at every
point of surface 1s constant and in all cases when nothing 1is said
to the contrary is infinitesimal.

With the assumptions made the following extremum propertles of
capacltance are valid.

1. Of all solitary stralght wires of assigned length and area
of transverse section, the one with the least capacitance 1s the
wire of circular section.

FTD-MT-24-269-70 xvii
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2. Of all flat plates of assigned area the one with least
capacitance 1s the circular disec.

3. O0f all triangular flat plates of assigned area, the one

with least capacitance is a plate in the form of an equilateral
triangle.

4, Of all rectangular flat plates of assigned area, the one
having least capacitance is the square plate.

5. Of all bodles of an assigned volume the one having the
least capacitance 1s the sphere.

6. Of all right cylinders of assigned altitude and area of
transverse section, the one having the least capacitance 1s the
right circular cylinder.

7. Of all systems in the form of two circular infinitely long
cylinders with parallel axes, one of which envelopes the other, the
one with least capacity per unit of length 1s the system in the form
of coaxial cylinders.

Very characteristic features are possessed also by the cepaci-
tance of the system shown in Fig. V-3. Let curve 040'A' represent
the section of an infinitely long cylinder, symmetrical with respect
to line 00'. Considering the surface of a cylinder an impenetrable
boundary cf a medium with specific inductive capacitance €, filling
the inside of the cylinder, we assume that 04’ and 0'A are sections
of infinitely long conductors I and 2, and points 4 and A' are
symmetric relative to plane 00'.

Figc v-3o
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In the conditions shown the capacltance between conductors 1 and
¢ fper unit of length) is numerically equal to €.!

An analogous feature can be formulated also for a system which
differs from the one shcwn in Fig. V-3 only by the fact that it con-
tains not two, but four divided infinitesimally thin gaps of conductor
1, 2, 3 and 4, the sections of which coincide with 1lines 04, 40’',

0'A' and A'0, respectively (Fig. V-4). For this system the mutual
partial capacitance between any two crosswise lying conduciors per
unit of length (013,1 or czh,z) is equal to € 1ln 2, whatever the
form and dimensions of the section of the cylinder.?

TNA,

V-3. Units of Measurement of Capacitance

The unit of measurement of capacitance in the system SI [Inter-
national System] is the farad (F). Furthermore, fractional units
are used: microfarad (uF) and picofarad (micromicrofarad) (pF):

1 wF=10"*F,
1 pP=10"" F,

To find capacitance in farads it is necessary to multiply its
value In another system of units by the appropriate conversion factor.

!The feature shown was noted for the first time for a particular
case in the work of Lees C. H., Proc. Manch. Lit. and Phil. Soc.
1899, 1-3; in general form it was formulated by F. Bowman (Bowman, F.
Proc. of the Lond. Math. Soe. 1935, ser 2, V. 39, p. 3, 205-213), ani

then Yas again considered by A. V. Netushil ("Elektrichcstvo" 1951,
No. 3). '

23ee, for exomple, Lampard D. G., Proc. IEE, 1957, C. 104, N 6,
271-2800 '
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The conversion factors of values of capacitance from other systems
of units to the SI system have the following values:

Srystem of Conversion

units factor

SGSE 107/2° ,
SasM 10°

S6s 10%/0° '
MKSA 1

[SGSE - Centimeter-gram-second electrostatilc
system; SGSM - Cgs electromagnetic system;
SGS - Centimeter-gram-second; MKSA - meter-
kilogram-second-amperec].

where ¢ 1s the number value of the velocity of the propagation of
electromagnetic waves in free space (in m/s), equal to 2.997925-108.

V-U4. Analogy Between Capacitance and Other

Physical Quantities

Because of the mathematical analogy of potential fields of
different physical nature, for each of them it 1s possible to show
the analog of electrical capacitance. Thus, for instance, for
stationary electrical, magnetic, and thermal fields such analogs
are electrical, magnetic, and thermal conductivities, respectively.
At assigned geometric parameters of the system of bodies, the value-
analogs of electrical capacitance are proportioiial to it, and the
coefficlients of proportionality are the relationships of the appro-
priate phy:ical parameters of a medium to specific inductive capaci-
tance. 3Specifically, for two bodles

G,=--C, (V-12)
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where G 1s the electrical conductivity between the bodies being
ccnsidered in a uniform medium with specific electrical conductivity
Y3 GM is magnetic conductivity between bodies in a uniform medium
with permeablility u; GT is the thermal conductivity between bodies in
a uniform medium with thermal conductivity coefficient A; C is the

capacitance between bodies in a uniform medium with specific inductive
capacitance €.

The same relationships connect partial conductivities and
partial capacitances in the system of many bodies.

Apart from the one indicated there is also an approximate
analogy between electrical capacitance and certain parameters of
high-frequency electromagnetic systems.! At assigned geometric
layout of the system of conductors, at high frequency especially,
the following approximate relationships are valid:

wao V. (V-13)

where ¥ 1s the wave resistance of a system of two conductors in a
uniform medium with specific inductive capacitance € and permeability
U, C 1s the capacitance between these conductors;

Ly~ (V-14)

where Lz is the inductance per unit of length of a two-wire line in
a unifo>rm medium with permeability u; Cz is the capacitance between
these conductors (per unit of their length) in a uniform medium with
specific inductive capacitance €.

For rectilinear wires the following relationships can also
be shown:

Ly = suling, (v-15)

!Tn this case frequency 1s assumed to be so high that the lines
of the magnetic field can be considered outside the sections of
conductors.
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where lkk is the inductance of a wire Zk long in a homogeneous medium
with permeablility yu; App is the intrinsic potential coefficient of a
wire in a homogeneous medium with specific inductive capacitance €,
calculated by the method of mean potentlals (see § 1-2);

MM =3 CPI‘I. COS ©;h ks (V"’ 1 6 )

where M., 1is the mutual inductance of two wires Zi and Zk long at

an angle ¢ik to each other in a homogeneous medium wlith permeability
M3 0y is the mutual potential coefficient of the same wires in a
homogeneous medium with specific inductive capacitance €, calculated
by the method of mean potentials.

The examined analogy makes the calculation of capacitance
equivalent to the calculation of a number of other physical parameters,
specifically:

a) magnetic conductivity of various magnetic circuits;

b) resistance of spreading out of electrodes connecting
electrical circuits with conducting medium (for example, grounds);

c¢) wave resistance of wave guldes, strip lines, antennas, and
other transmitting and radlating systems;

d) thermal conductivity between various heated bodies.

V-5. Means of Calculation of Capacitance

Formulas (V-1)-(V-6) cannot be directly used for calculation of
capacitance (or quantities connected with it) tecause usually only
geometric parameters of the system of conductors and the specific
inductive capacitance of the surrounding medium are known. Therefore,
to determine capacitance 1t 1s necessary either to design charges
of conductors, having been assigned by their potentials, or, on the
contrary, to find the potentials of conductors, having been assigned
by the quantlity of charges.
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Both these problems can be strictly solved on the bails of

t ¢ calculation of the electrostatic fleld of the system of conductors
beling considered. Really, knowing the distribution of electrostatic
field potential (u) in the space surrounding the conductors, it is

possible to find the charges of each of them with the aild of the
Z I relationship:

T
o

c ou
. Q‘“‘?‘}"E"" (V-17)
. ; _

where Qi 1s the charge of the i1~th conductor; Si is the surface of
: the Zi~th conductor; n 1s the external normal to the surface of the
conductor.

When the electrostatic field cannot be calculated, speclal
methods of calculating capacitance are used which are based elther on
directly establishing the connection of the charge of the conductor
with the potential of its surface (methods of direct determination
of capacitance), or upon simplification of problems of calculation of
electrostatic field (auxiliary methods).

S

L Formulation of problems of calculation of capacitance depends
upon the selection of initial quantities (charges or potentials),

which, in turn, 1s determined by the form of the system of conductors
considered.

| In calculatlng the capacitance of a conductor, its potential

| or charge can be assigned at random. If it is supposed that potential
is equal to one, then the charge of a solitary conductor will be
numerically equal to 1ts capacitance. 1In calculating the cuapacitance
between condu~tors, s a rule, it is possible to define only their
charges, and the condition Q2 = -Ql must be observed.

The potentilals of both conductors in general cannot be selected
at random since they are connected by the relationship

| 4 Cy v \
5 ameuee S s -
v. Cu * ( 1 8 ’
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following from (V-3) when n = 2, 9, = ~9,.

The assignment of potentials as initial quantities 1s possible
only 1in certaln special cases, for example, the following.

1. The system of two conductors 1s symmetrical relative to a
certain plane. 1In this case Cll = 022, and at Ql = -02 Vl = -V2 = 4,
where A 1s a random quantity.

2. The dimensions of one of the conductors (for example, the
first) are incommensurably great in comparison with the dimensions
of the other. Here Cyq >> Cy5, 022/011 = 0, i.e., v, = 0, v, = 4,
where A4 1s a random quantity.

With the calculation of partial capacitances in a system,
initial quantities can be in general only their potentials.

Thus, with ralculation of intrinsic partial capacitance, the
potentials of all conductors of the system must be taken equal to one
and the same random constant, and in calculating the mutual partial
capacitance between the i~-th and k-th conductor, the potential of
one of them can be selected at random, and the potentials of all the
remaining conductors must be taken equal to zero.

As already noted in the preface, methods o:’ calculation of
electrostatic fields are covered in sufficient detaill in literature;
therefore, in the last two chapters of this book, only special
method:: of calculating capacitance are considered.
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PART ONE

SPECIAL METHODS OF CALCULATING CAPACITANCE
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CHAPTER 1 s

METHODS OF DIRECT DETERMINATION OF CAPACITANCE

1-1. General Remarks

Methods of direct determination of capacitance are applicable
when conductors are in homogeneous media. These methods are based
on replacement of each of the conductors considered with a dielectric
body having the same form as the conductor, and the same specific
inductive capacitance as the surrounding medium. Instead of an
unknown true (equilibrium) distribution of charge over the surface
of the conductor, a certain fictitious distribution of charge over
the surface of the body o0(S) or in its volume p(v) is assigned.
Methods of assignment of functions o(S) or p(v) depend on the features
of' concrete methods of direct determination of capacitance; however,
in any selected form of these functions, the value of the total charge
of the body is found from the formulas

Q= [o(5)ds . - (1-1)
i |
or

Q= Ie(v)dé. (1-2)
%t

and the potential at the random point (Pk) of the surface of the body
from the formulas

] L‘ e@
V(P.)"Tﬂrzj"“’h P‘)ds (1-3)
|
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V(P.)--.;zj',-(-},“j’ﬂdv. (1-4)
. ]

where P, 1s a point either on the surface of the i-th body (1-3),
or in its volume (1-4); r(Pk; Pi) is che distance between points
Pk and Pi; n is the number of conductors in the system.

For a plane-parallel system of conductors, instead of (1-3)
and (1-4) one ought to use the formulas:

a
. 1 A 1
V(Pg’ ‘—;XS-(&, 'ﬂ’(P‘= P‘)‘L (1_3' )
= %1
1 T 1
or V(’g) -Ezjsm'lm‘s. (1_,," )
. U

where Li 1s the contour of the section of the i-th body; T(L) 1is the
linear density of a charge on the contour of the section of the i-th
body; o(S) is the surface density of the charge in a section of the
i=th body; Pk is a point of the contour of the section of the k-th
body; Pi is a point either on the contour of the section of the i-th
body (1-3') or inside its section (1-4'), r(Pk; Pi) is the distance
between points Pk and Pi’ lying in the section.

In general the surface of the btody considered is not equipoten-
tial, whereas the surface of any conductor is equipotential. To get
rid of this discrepancy of the whole surface of the body, a certain
constant potential V; 1is conditionally added, the value of which 1s
determined by this or that method according to the distribution of
the potential found from (1-3) or (1-4).

Disposing Qi and Vi for each of the conductors of the system
(i =1, 2, ..., n), the capacitances cf this system can be found
approximately using formulas (V-1)-(V-4),

FTD-M=-2U=-269-T0 3




1-2. The Method of Mean Potentials

The method of mean potentials 1s based on assignment of a
fictional distribution of charge over the surface of or in the volume
cf bodles replacing conductors. 1n this case the surface of each of
the bodies is ascribed a constant potential equal to the arithmetic
mean of values of potential in all points of the surface of the body
(v = ch). This quantity (ch) is called the mean potential of the
surface or the mean potential of the conductor.

When the method 1s used to determine V, the law of fictional
distribution of charge has comparatively little effect on accuracy
of determination of capacitance (inasmuch as capacitance is an
integral characteristic of electrostatic field) and is usually
selected only from conditions of simplicity of calculations. The
most widespread assumption is that the charge is uniformly distributad
over the surface of the body. A method of calculation of capacitance
based on this was proposed by G. Howe [1-1] and bears his name.

Other methods besides this were proposed for assigning the law
of surface distribution of charge, using the method of mean potentials.
Thus, in [1-2] 1t is proposed to select this law in the form

“5) = A U%]". (1-5)

where S 1s the surface of the conductor; 4 i1s a random quantity;
r 1s the distance between two points of the surface S, one of which
is a running point and the other of which 1s a fixed point.

Formula (1-5) in a number of cases gives a better approximation
than in the Howe method to equililibrium distribution of charge;
however, the calculation formulas obtalned are usually more complex.

Below we shall 1imlt ourselves malnly to consideration of the
Howe method, which 15 the most widespread method of direct determina-
tlon of capacitance.
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For a solitary conductor mean potential can be determined
according to the formula

1 ds
Vw-?jvw)dsafxsd&}'—,-. (1-6)

where S 1s the surface of the conductor considered (and also the

area of this surface); V(p) is the potecntial at point p of surface S,
determined by formula (1-3); Q@ is the total charge of the conductor;
r 1s the distance between the polnts of the surface of the conductor.

Calculation of mean potential by formula (1-6) in a number of
cases can be simplified, having broken the surface of the conductor
into individual sectlons and consecutively calculating the mean
potential of each of caem as a solitary body. Into these cases the
mean potential of the whole conductor is determined by the formula

v" -Xv”..%. (1-7)

where Sh is the area of the surface of the k-th section; S is the
total area of the surface of the ccnductor; chk 8 the mean potential
of the k-th section; n 1s the numt:r of sections into which the
surface of the conductor is divided.

For wire the ratio Sk/s in this form can be replaced by the
ratio Zh/l, where lh is the length of the k-th segment of wire, and
7 18 the total length of wire.

From formulas (1-6) and (V-1) it follows that the capacitance of
a solltary conductor calculated by the Howe method is determined by
the expression

Co draS? Uds'J“,—s]". (1-8)




With calculation of the capac.itance between two conductofs, the
rmean potential of each of them is found from the formulas

ch (S. 5"——1‘ )dS’:
cho=—T_Q‘?":5( S, j: +'sl—"£-—-)d3' (1_9)

where S1 and 5, are the surfaces of each of the conductors considered
(and also the areas of these surfaces); rqq and r,, are the distances
between two points of one and the same conductor (of the rirst and
second, respectively); Pis = P 1s the distance between two points,

of which lies on the surface of the secondy @ 1s the total charge of
one conductor.

As in the previous case, calculation of mean potentials of
conductors can be simplified, having divided the surfaces of each
or of one of them into separate sections or segments (in the case of
a wire) and having used formulas (1-7).

In calculation of the difference of mean potentlals between two

potentials, which consists of the following.

The mean potentlal of conductor A induced by charge @, 1s evenly
distributed on conductor B, and 1s equal in absolute value to the
mean potential of conductor B induced by a charge ~ @, uniformly
distributed on conductor A.

Use of formulas (1-9), taking the mutuality principle into
account, lcads to the expression

S G i o i
)

one of which lies on the surface ¢f the first conductor and the second

conductors, use can also be made of the principle of mutuality of mean

b p Ha A B b+
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From formulas (1-10) and (V-2) it follows that the capacitance
L.etween two conductors calculated by the Howe method is determined by

R
‘5"3’5 =1 I (1-11)

When a system of two conductors 1s plane-parallel instead of
(1-11) the next formula, analogous to 1t, for capacitance per unit of

the expression

length of conductors should be used:

c,az-.(: "wj :‘JL——— win—u-g-

i) L,

+-—£dl.’£ln—dl. (1-12)

where Ll and L2 are the contours of the sections of conductors
considered (and also the perimeters of these sections); Pyys Pyo
and r,, are the distances between the corresponding points on the

contours of the sections (see designations to formula (1-9)).

In calculation of partial capacitances 1n a system of many bodles,
direct use of the method of mean potentials 1s difficult since 1t
usually leads to bulky calculations. Therefore, in the given cases
the method of mean potentlials 1s used, as a rule, to calculate
potential coefficlents with subsequent conversion to partial capaci-
tances on the basls of the relatlionships given in V-1.

Calculatlion of mean potentlals 1n a system of n conductors 1is
based on utilization of the formula

agE
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where V 1s the mean potential of the ¢«th conductor; Sk is the

surfacebg; the k-th conductor (R =1, 2, ..., n) and also the area

of this surface; Qk is the full charge of the k-th conductor; Toh is
the distance between two points on the surface of different conductors
(kR # ) or one conductor (k = ¢). 1In this case between the quantities
of the mean potentials of any two conductors (4 and B) the relation-

ship is catisfied®

l."Al:p QB
chep i 2B, 1-14
vBcp Q.A ( )

where VAcp is the mean potential of the conductor 4, created by
charge QB, uniformly distributed on conductor B; VBcp is the mean
potential of conductor B created by charge QA’ uniformly distributed
on conductor 4.

In determination of partial capacitances the charges of all the
conductors of the system must be taken as different from zero, and
calculations made using formula (1-13), even allowing for relation-
ship (1-14), become very lengthy. Upon finding potential coeffi-
cients (when only one of the conductors must be considered charged)
formula (1-13) is strongly simplified and coincides in form with
(1-6). This leads to the following expressions for intrinsic and
mutual potential coefficients calculated according to the Howe method:

1 . (98, :
=iy ms{j'fs 5 u ! (1-15)
(] [}
1 __fCas (8.,
Rala TN ,‘; “ j ™ (1-16)
(]

tor a plane-parallel system of n conductors, analogous formulas
f.ake the form:

'When IQAI = IQBi, this formula expresses the principle of
mutuality of mean potentials formulat->d above.




P r epiagonce

1 ’ ]
= “'—&.L’)‘“ Jh"-'? a, . (1-17)
4 (4
' .
= Ty [ Jlorg &=L
L]

where aii,z and aih,z are intrinsic and mutual potential coefficients
per unit c¢f length of conductors; LZ’ Lk are contours of sections of
the i-th and k-th conductors, and also the perimeters of these
circults; r. and r.p, are the distance from any fixed point on the
contour of the section of the i-th conductor up to a random point of
this contour (rii) or the contoir of the section of the k-th conductor
(rik)'

All the above formulas for the calculation of capacitance by the
Howe method are approximation methods.

1. The values of capacitance of a solitary converter calculated
by the Howe method [formula (1-8)] and of the capacitance between
two conductors [formula (1-11)] do not exceed the accurate values
of these quantities.

For a solitary conductor this affirmation follows directly
from the variation principle of Gauss [1-3], which is expressed in
the form

IVGﬂwGﬂdS
c."_—-?;._—,-.' (1-19)

where Co is the trve value of capacitance of a solitary conductor
limited by surface S; 0(S) is any assigned distribution of charge

Q over surface S; V(S) is the potential at a random point of surface
S at assigned distribution of charge.

Supposing in (1-19) that o(S) = %, where S also designates the
area of the surface of the conductor being considered, and using
formula (1-3), we obtain in the right side of the inequality the
quantity being determined by formula (1-8).
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For the capacitance between two conductors the proof is con-
ducted analogously,

2. The values of intrinsic¢c and mutual potential coefficients
[formulas (1-15), (1-16)] are greater than the true values of these
quantities.

3. For conductors of one and the same (or close) layout the
error of the method of mean potentials is less, the more uniform the
equilibrium distribution of charge on these conductors. Specifically:

the relative error of calculation of capacity of any straight
solitary wire (or cylindrical conductor) with the assigned form of
cross section 1s less the greater the ratio of its length to maximum
dimension of cross section, its lowest value 1s reached when the

section 1s round;

the relative error of calculation of capacitance of a flat
rectilinear plate of assigned area 1s less the greater the ratio
of dimensions of the plate;

the relative error of calculation of capacitance of solitary
conductors in the form of right polyhedrons lnscribed in a certain
sphere or described relative to 1t i1s less the greater the number of
sldes;

the relative error of calculation of capacltance between two
plates of the same form and dimensions in one plane 1s less the
greater the ratio of dlstance between plates to any dimension of
them.

FFrrors of calculation of capacitances are numerically evaluated
by the Howe method taking into account the affirmations, by means
of comparison of the corresponding approximation expressions with
accurate ones (see Example 1-2).

10
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Example 1-1l. Let us determine the capacitance of a conductor
‘n the form of an a x b rectangular plate. Using formula (1-8)

let uc precalculate Jz%i- For this let us introduce a rectangular

system of coordinates the origin of which is compatible with one of
the peaks of the rectangular contour of the plate and direct the axes

along the sides of this contour. Then the value of -%i at a certain

point with coordinates 215 ¥q (0 < z, < aj 0 < ¥y S b) will be
determined by the expression

- fefre

- Anb—-!-!- ma—ﬂz +

+(b-y.)(mh‘4 & +Anh =\ )+,,(Arsh—-3l+mh—¥-)+

tn (m L %) = Sl ¢

Repeatedly integrating,® after the corresponding conversions
we obtain
a [
5 as'J{i-sdx.Sm.:‘mm-
b 1 1 1
- 2[«'6 Arsh'—;+wmsh-:— +-fs—- (a'+b')——a—(a'+b')T]-

Substituting the obtained expression into formula (1-8), we
obtain the following approximation expression for the capacitance

1Using the symmetry of expression f(zl, yl) relative to the
quantities entering 1t and also the obvious relation [v(--t)dl-
-{vhﬁb where ¢ 1s a random function, it is sufficlient to carry

out integration of only one of the components entering f(zl, yl).

11
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»f the plate ccnsldered:

Cox 2 . %

‘ .
a% Arsh - -+ ot Arsh >+ -;— (@ + b')—-;—(al + o7

Example 1-2. Using the Howe method, let us determine the value
of the capacitance of a conductor in the form of a solitary circular
disc of radius R.

Using formula (1-8) again, let us precalculate

5@.’.5’,&5_%%'“(%)'

where E 1s a complete elliptical integral of the 2nd kind with
modulus k = rl/R.

Then
x R : ' '
543'5.“_;’. - 4R§ 405 nE (%-)dr. =a=m5aama- ‘_“.ai'.,

Substituting the obtained expression in formula (1-8), we find

that the capacltance of a circular disc calculated by the Howe
method 1s equal to

Coox -3- =%R m 7,40¢R.

The accurate value of the capaclitance of the disc 1s equal to
8eR. Thus, the relative lnaccuracy of the calculation of the
capacitance of a solidary disc by the Howe method 1s about 7.5%.

In calculation of capacitance of closed shells, a fictitious

charge can be considered distributed not only over the surface,
but also in the volume of the bodles replacing these conductors.

12
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In this case the general scheme of using the method of mean
rotentials remains constant; however, the features of its applica-
tion depend on the character of distribution of charge in the volume
of bodiles.

With continuous distribution of charge with assigned volume
density p(v), the course of calculation differs only by the fact that
to determine potential at points of the surface of the body instead
of formulas (1-3) it is necessary to use formula (1-4), This does not
usually lead to simplification of calculations since instead of surface
integrals entering (1-3), it is necessary to reckon integrals in terms
of volume.

With continuous distribution of charge along certain lines in a
volume of bodies (it is expedient to use such distribution in calcu-
lating the capacitance of conductors of drawn out or axisymmetric
form) in formula (1-4) the volume density of a charge must be replaced
by linear density, the volume integral must be replaced by a curvi-
linear integral, and calculations are simplified. Thus, for a
solitary axisymmetrical shell

aeesifa]£]%

where L is the segment of the axis of symmetry inside the conductor
(and also the length of this segment); S is the surface of the
conductor (and also its area); r 1s the distance from the fixed point
of the surface S to the running point of the axis L.

With discrete distribution of charge in the volume of bodies,
the potential at every point of surface of the bedy is calculated

as the sum of potentials of polnt charges.

1-3. Method of Grounds

During the calculation of capacitance by the method of grounds
the surface of each of the bodies replacing the conductors 1is

13



4ivided into a number of grounds the simplest possible form of which

is selected and the dimensions of which are so small that the fictional
distribution of charge in the 1limits of each ground can be considered
uniform.!

The: surface of each ground 1s ascribed a fixed potential ;k equal
to the potential at any one (characteristic) point of this ground.

At sufficlently small dimensions of grounds, the method of
location of characteristic points on their surface has comparatively
little effect on the results of calculation. Therefore, it 1s usually
selected only from conditions of simplicity of calculations.?

The potentlal at the characteristic point of each ground can be
determined with the aid of formula (1-3) and with the accepted law
of fictlonal distribution of charge

Vam o 3 0t (1-20)

where Vk 1s the potential at the characteristic poilnt of the k-th

ground; n 1s the number of grounds; 0, 1s the density of a charge on
the surface of the i-th ground; Si is the surface of the i-th ground;
Ths is the distance from the characteristic point of the k-~th ground

to a random point on the surface of the i¢-th ground; a“=-§€%t
(]

The value of coefficlents aj,; are determined only by geometric
parameters of grounds and thelr mutual location. When the distance
between any two grounds considerably exceeds the dimenslons of at
least one of them (for example, the Z-th), the quantity a,, can be
determined with sufficient accuracy as the ratio of the area of the

PUTY

15ce examples of use of the method of grounds in works [1-5, 1-6].

2Phe location of characteristic points on the surface of identical
grounds are usually selected ldentical, and on the surface of
geometrically similar grounds similar.

14
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i=-th ground to the distance between the characteristic points of the
i=th and k-th grounds.

The values of potentilals of grounds (Pk = Vk) found from (1-20)

in the 1imits of the surface of one conductor are equated with one
and the same constant.

For a solitary conductor this value (4) can be selected at
random. This leads to the following system of linear algebrailc

equatlons relative to unknown values of density of charge on the
surface of each ground!

040 + Bis + oo )40, = 424,
000 + Gntg -+ .. . 18y, = 4mA,
® & o o o & & e e s 0 e e e (1-21)

au3 + 3,49 e e + Oun%y = 4=A,

Hence the charge density on the surface of the k-th ground is

a,=4::-A-:_*-, (1-22)

where
Gy Gy ... a,
Mgy Ogg « o . Ggy

A=

Qy Gy ... 04,1,

and Ak is the determinant formed from A by replacement of all the
elements of the k-th column with ones.

At the found values of o the total charge of the conductor in
general (at random separation of surface of conductor into grounds)

'In a number of cases from conditions of symmetry it is possible
knowingly to show certain grounds with the same charge density.
In these cases the number of unknowns in (1-21) is reduced.

15
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is determined by the formula

L $ (1-23)

QB‘Rl'A'—A-ES.'A., = 3
where §, 1s the area of the k-th ground.
If all the grounds are identical, then
s 2
Q=4‘RlA'K.§A.. (1-233)

where S 1s the total area of the surface of the conductor.

The obtained expressions for total charge lead directly to the
following approximation expressions for the capacitance o a solitary
conductor:

a) 1in general

e ' .- 0
C._.4m-A—.§$.-A,. (1-2“)

b) for identical grounds

'c.:m-fa-:g. Ay (1-24a)

During the calculation of capacitances in a system of two and
more conductors, direct utilization of the method of grounds 1s
difficult since it leads to lengthy computations. Therefore, ih
these cases the method of grounds is used, as a rule, to calculate
coefficients of electrostatic induction with subsequent conversion
to values of capacitance on the basis of the reictionships given
in § V-1.

Let the number of conductors in the system be equal to ¥, and
the number of grounds into which the surface of the p-th conductor
is divided ", (p =1, 2, ..., N). Then the potential at the

characteristic point of each ground can be found from formula (1-20)
N

when a= Y, Then the potentials of all platforms on the surface of
=1

NP




each conductor should be equated with one and the same constant

A_(p =1, 2, ..., N); however, the values of the constants A_ can no
lgnger be assigned at random (as in the case of a solitary conductor),
but must be selected taking into account the conditions indicated in
V-1 and V-5. These conditlons are the simplest in the'calculation of
coefficients of electrostatic induction since the potentials of all
conductors, except one, should be taken equal to zero.

Let us assume, for example, that it 1s necessary to determine
the intrinsic coefficlent of electrostatic induction for the p-th
conductor and the mutual coefficient of electrostatic induction for
the p-th and g-th conductors (p, ¢ =1, 2, ..., N, p # q). Without
losing generality one can assume that areas with numbers 1, 2, ..., np
belong to the surface of the p-th conductor, and areas with numbers
np + 1; np > #poy 000F np.+ nq belong to the area of the g-th conductor.
Furthermore, let us assume that the potential of the p-th conductor
is equal to a certaln corstant 4.

Then the system of equatlions for determination of unknown values
of charge density on the surface of the grounds takes the form:

Nan=teed withi=1,2...,0p '
[ X .
[

3 Ed]ﬂ,-OWith .-il,-""..-., ’l’+ﬂ' (1-25)
] =] 4

The solution of this system again leads to formula (1-22), where
this time Ak is formed from A by replacement of the first n_ elements
of the k-th column with ones, and all the rest of the elemznts of
this column with zerces.

The found values of charge density allow directly determining

the quantity of total charge of the p-th and g-th conductors, and

. thereby the sought values of intrinsic¢ and mutual coefficients of
electrostatic induction. The formulas for the determination of

17
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these coefficients have the form:!

Fn”""—;‘é,s-‘ah (1-26)
oy npyta,
by ey (1-27)

The given formulas (1-24), (1-26) and (1-27) are apnroximation
formulas, and, as can be shown, give underestimated values of the
capacitance of a solitary conductor anu of coefficlents of
electrostatic induction in a system of two and more conductors.

From the essence of the given method it i1s clear that the

inaccuracy of calculation from these formulas is less the smaller the
grounds into which the surface of the conductors 1s divided. At
rather small sizes of grounds the accuracy of calculation of capaci-
tance by the method being considered can be brought to any requir:
limits and, in particular, can be higher than when using the method
of mean potentials.

Exampnle 1-3, Using the method of grounds, let us consider the
same problem as in Example 1-i, having assumed that the surface of
the plate is dividad into ¥ identical grounds, numbered as shown
in Fig. 1-1.

~ | Fig. 1-1. Rectangular
J p ~te divided into 4
- grounds.
- o
1 0 !
a
!

'With separation of the surfaces of the conductors into
identical grounds formulas (1-26) and (1-27) can be simplified
similar to formula (1-24).

18
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Using a rectangular system of coordinates (Fig. 1-1) and selecting

as characteristic points the points of intersection of diagonals of
each ground, in accordance with formula (1-20) we find:

s

ay

dS

an =J7‘T= 4}‘ dx -V— LB aArsh-z-+bArsh-£b-,
X3 g3

8 a4 3bj4

d dy b a 3b a

= | —_——=2 — e 52— —— ot —
ayy 5 = \ dx V;'-i——y' 2 Arsh = + 7 Arsh_ab +
] o/

a 3b a b
+-—2- Al’sh?—T Arsh-;—.

sau 3014 .
ap = _d§_.-_- dx _______dy sbArsh—a—+aArsh-b—'—-
' VX‘-FH' b a
S, L1 4 ' i
— parh A8 sh%"-—l’—mh---—-mh—-.

a b b 3a 3a b
-——— ArSh — 4+ — Arsh — 4 — L.
2 a tg Arhom 4 Anh o2

Because of the symmetry of the location of grounds 0, =0, =
= 03 =0y = 053 furthecrmore, with the accepted division of surface

1n§o grounds @)y = ayy = a33 = ayys agp = a3u; a3 = a,y. Therefore,
in system (1-21) it is sufficient to keep only one equation, whence

op== Are — 24— = dmad (a Arsh - +b Arsh 5 4+ 2 Arsh

o
\l

a % , b 3 , % b\~!

Using then formulas (1-23a) and (1-24a), we find that with the
means shown of division of plate into grounds, its capacitance is

Co=~ 4rxe —— = . ;: %
' aArsh— 1 b Arsh -5 4 =2 Apgh 2 4 .2 .
¢+ b+‘Ars3.+‘.Arsb‘+
[ ] 3a  3a ]
2 Aarpp 8 Y8 A
+ 7 rs . + 7 Auha.
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1-4. The Method of Ecuivalent Charges

The method belng considered consists of determination of the
distribution of charges in the volume of bodies replacing conductors
in the form of closed shells at which the surface of these bodies is
equipotential.! 1If such distribution of charges is found, then the
values of capacitance in the system of conductors can be determined
according to the formulas shown in § V-1, substituting in place of
potentials of conductors potentials of surfaces of bodles, and instead

of charges of conductors values of the total charge in the volume of
esch body.

There 1s no general means of determining the distribution of
charges creating electrostatic flelds with assigned configuration of
equlipotential surfaces 1n existence at present. Therefore, in
determination of capaclitance from the method of equivalent charges,
the reverse method is usually employed: assigning this or that
concrete distribution of charges, the form of equlpotential surfaces
of electrostatic field 1s determined for each of them, and thereby
a certain "set" of distributions of charges which create known
fields 1s obtained. Using it, it 1s possible in a number of cases
to find such a distribution of charges for which the form of equi-
potential surfaces coincides (oir closely enough) with the form of
surfaces of the conductors considered.

Sometimes the required distribution of charges can be found also
directly from the assigned form of the surface of conductors.

Thus, during calculation of capacitance in a system of conductors
bounded by surfaces of spherical form, the required dictribution of
charge can be found directlv by means of utilization of the following
known features of electrostatic field of point charges.

'At the shown distribution of charge the electrostatic field out-
side the surface of the bodies coincides with the electrostatic field
of the system of conductors being considered. In this sense the
charges concentrated in the volume of bodies are equivalent to the
charges distributed over the surface of the conductors.

The method conslidered 1s also sometimes called the method of
"consolidation" or "congelation" of equipotential surfaces.

20
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1. In the field of point charge q any spherical surface with
center at the point of location of charge 1s equipotential. If the
potentlial of thils surface is equal to 4, and the radius 1is equal to
a, then tho charge located at the center of the sphere is ¢ = lUdnea 4.

2. In a fileld of unlike point charges 94 and 95 separated by a
distance of d, there 1s a surface of zero potential having the form
of a sphere, the center of which 1s the line passing through the
pointc of location of charges, and the radius of the sphere R and the
location of 1ts center are determined from the relationships:

R® == hy-hy;

- -
?‘. .. .q:R'. (1-28)
lhl—hllgdo

where hl and h2 are the distances between the points of location of
the charges q; and 95 and the center of the sphere.

At assigned radius of sphere R, and quantity and location of one
of the charges (for example, charge ql), relationships (1-28) can be
used to determine the quantity and location of the second charge 9o
which 1s called the reflection of charge 9, relative to the sphere
or simply the reflected charge.

The application of these features allows showing the means of
determination of distribution of equivalent charge in a volume of
bodies bounded by spherical surfaces. 1In general form this method
consists of the fact that, locating in the center of each sphere a
charge of appropriate quantity, its influence on the potentials of
the remalning spheres 1s compensated with the ald of a definitely
selected system of reflections.

Example 1-4. Let us determine the capacitance of a solitary
conductor formed by two spheres of radii a and b, which intersect
at an angle of n/2; a > b, and the distance between the centers of
spheres 1 > a - b (Fig. 1-2).

21
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Fig. 1-2. A solitary conductor

formed by two spheres with radii
a and b (a > b), intersecting at

right angles.

Taking the potential of the conductor to be equal to the

constant A4, we locate in the center of a sphere of radius a (sphere 1)

a point charge g, = hrea-A.

In the r'ield of this charge the surface of the sphere 1 acquires
a potential A, but the potential c¢f sphere 2 is inconstant. Reflecting

chargeqlo.relative to sphere 2, we find that the reflected charge is

b .ab '
e 00 22 e g ———— A
M T Yare Vaim
and is at a distance of
”n
Ay =
n Va'+ﬂ

from the center of sphere 2, 1.e., at a distance of

ha - a’+b‘-— .b' - d‘
. V pa'-i-b' Vc‘+b’

from the center of sphere 1.

In the field of charges 410 and 911 the potential of sphere 2
is equal to zero, and sphere 1 is not eaulpotential. To restore
constancy of potential of sphere 1 we reflect relative to it charge
qqq° The reflected charge 1is -

aV a0

o = 4?..6‘

Qg™ —

and 1s at a distance of h12 = ‘i'_/_"'_ﬂ_—.]/at;-m from the center of

at
sphere 1, 1.e., at the center of sphere 2.
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From the means of selectlion of quantity and locatlon of charges
910° 911 and 9109 it 1s clear that in an electrostatic field induced
by them the potential of each of the spheres consldered 1s constant
and equal to 4.

Summarizing the found quantitles 910° 971 and 9105 We find that
the equivalent charge 1s

. Q=m+m+%-
=4zsd @+ 0————=]).
(++-voew)
Therefore, the capaclitance of the conductor being considered is

C.r:‘ma(l-{--—:——-—-—-———-b ).

Va'-l-b'

Example 1-5. Let us determine the capacitance of a solltary
conductor formed by two adjolning spheres of equal radii (Fig. 1-3).

Fig. 1-3. Conductor
formed by two tangent
spheres of equal radil.

Assuming again the potential of the conductor considered equal
to A, let us first pick the distribution of equivalent charge at which
one of the spheres (sphere 1 for sure) has potential equal to 4,
and the other has potential equal to zero.

The required value of the potential on sphere 1 1s obtained,
as before, placing in i1ts center a point charge 910 = Uread, where a
1s the radius of the spheres. However, the potential of sphere 2
in this case 1s not equal to zero. To achleve zero potential on
sphere 2 we reflect charge 910 relative to thls sphere. 1In this case
we obtain the reflected charge 911> the quantity and location of
which 1s shown 1n Table 1-1. In the fleld of charges 9,9 and 9711
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Table 1-1. Quantity and
location of initial and
reflected equivalent
charges for the conductor
shown in Fig. 1-3.!

w 0,C, 0.,
] P (3] a2
ol 1 % 0
1-L R él.
) 2 :
ol L da 2
3 3 3
1 3a 5
3l— — —— —
1 1 i
1 s 4
4] — —_—a —
5 3 s "
1 5 7
sl-L}] 2 o
s s | **
AI""')"[ «-n"'] [, «-n']
YT el N | ir ey

1

olck and ozck are the
distance of the point of
location of charge 914

from the centers of spheres
1l and 2, respectively.

the potential of sphere 2 1s equal to zero, but the potential of
sphere 1 is inconstant. To restore the constancy of this potential

we reflect charge 971 relative to sphere 1, finding the charge shown

in Table 1-1 915

Continuing this process (see Table 1-1), we see

that the required values of potentials of spheres can be achieved
only with an infinite number of reflections; the k-th reflected

charge 1o

(=1

T £y 1

Qo
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In completely analogous manner a distribution of equivalent
charges dops CaN be found with which the potential of sphere 2 1s
equal to 4, and the potential of sphere 1 1s equal to zero. 1In this
case it is obvious that dip = d2p°

In the total field of all charges found in this way the potential

of each sphere 1s equal to one and the same constant A. Therefore,
in thl. case the equivalent charge 1s

00 o o -
Q= 224.. -8rsa-A XJ;‘T‘II: = 8xe0A.-In2

Thus, the capacitance of the conductor considered is

Suarsser e BAL

Cy = 82¢d-In2

The scheme of application of the method of equivalent charges
for calculation of capaclitance between two conductors 1s analogous
to the scheme of calculation of capacitance of solitary conductors.
An example 1s the calculation of capacitance between two spheres
given in [1-4].
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CHAPTER 2

AUXILIARY METHODS IN THE DETERMINATION UF CAPACITANCE

2-1., General Remarks

The methods considered in the present chapter pursue the objJective
of bringing the problems of determination of capacitance to a form
permissible for calculations or to a form simplifying them. Such
methods will subseguently be called auxiliary methods.

The majority of auxiliary methods consist of geometric conver-
sions of systems of conductors and are based on the fact that in some
of these conversions the values of capacitance remain constant or
vary in a known manner. If such conversion 1s carried out, then the
problem boils down to calculation of capacitance in the converted
system, which can be done either by methods of direct determination
of capacitance or by means of calculation of electrostatic field.

Some of the auxlliary methcds are based on simplification of the
problems of calculation of electrical field (and thereby of capaci-
tance) with constant geometric parameters of the system of conductors.
Such methods consist in introduction of the relief functions, which
are connected in a known way with the potential of the electrostatic
field, but satisfy simpler boundary conditions. If tne introduced
auxliliary functions satisfy the Laplace equation, then the problem of

thelr calculation turns out to be simpler than calculation of the
clectrogstatic field.
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2-2. Method of Conformal Conversions

The method of conformal conversions 1s used to calculate
capacitance in plane-parallel systems conslsting of two or more
conductors. The basis of the method 1s the feature of capacitance
to remain constant during conformal conversions of shown systems (the
invariance of the capacitance relative to conformal conversion).

Let us recall that conformal -onversion is geometrical conversion
in which the angles between any two intersecting lines remain constant,
and the length of all infinitesimal segments passing through the given
poirt of the plane changes the same number of t’nes. Conformal con-
version 1s described by the analytical function of a complex varliable
on condition that this function is unambiguous, and its derivative in
the reflected area nowhere turns into zero. The analyticity of the
function of the complex variable W(z) = ¢(x, y) + iY(x, y) is checked
with the aid of the conditions of Cauchy-Riemann:

AR TR A
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The invariance c¢f capacitance relative to conformal conversion

: permits replacing the problem of determination of capacitance of any
: plane-parallel system of conductors by calculating the capacitance

of another system obtained from the initial system by means of one or
several repeated conformal conversions. If, especially, the initial
system can be reduced to any system with known capacitance, then it
thereby ceases to be necessary to calculate capacitancé.

T

With practical utilization of the method considered, the section
of the plane-parallel system of conductors is taken as the plane of
the complex variable z, and a conformal conversion f(s) 1s selected
as a result of which the system takes a simpler form permissible for

1The reader will find more detailed information on conformal
conversions in numerous works on the theory of functions of complex
variable, for example, in works [2-1 to 2-47.
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calculations. Expressions for the functions which realize conformal
conversion of some simple areas to upper semiplane are given in
Table 2-1.

Table 2-1. Conformal conversions of very
simple areas tn -per semiplane.

Form of initial The function which realizes
area 1in plane = the conformal reflection of
the area in plane s on the

upper half-plane of plane [

-

L'

28

P .

At e AN AN AL TIAE S Eab A




Table 2-1 (Continued).

Form of inltlal The function which realizes
area 1ln plane sz the conformal reflection of
the area in plane z on the

upper half-plane of plane T

=R.{ZERY
c. (:-R

g le—s V@)

_ vhen e+ b,
(= Z1+2 yhena=d
. 2

Lo

Note. ag = the dimensional coefficient
of length, numerically equal to one,

In a number of problems encountered in practice the geometry of
systems proves to be so complex that i1t 1s impossible to carry out
1ts conformal conversioﬁ to a form permissible for calculations. In
these cases use 1s sometimes made of methods of approximation conformal
conversions (see, for example, [2-41]).

Example 2-1, Let us determine the capacitance (per unit of
length) between an infinitely long elliptical ecylinder and an infinite
band, the sectlons of which are shown 1n Flg. 2-1la.

a)

Fig. 2-1. Elliptical

2a cylinder and infilnite
band 1n boundless homo-
geneous medium: a)
initial system; b)

2 auxillary system obtalned
by cutting the 1initial
system with a plane of

§
, 1ts syrmetry; c¢) reflected
r/, ’
c) % / system in plane .

o o 6 o

4
b) ‘
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The sought capacitance 1s equal to twice the capacitance between
the conductors presented in Filg. 2-1b. To calculate the capacitance
of this auxlliary system we use the method of conformal conversions,
taking plane z0y as the plane of the complex variable s. According
to Table 2-1, the function conformally reflecting the area considered

on the half-plane of the new complex variable f (Fig. 2-1lc), has the
form

c-:‘-‘-‘—“—(n-oVn-.wu).

With the ald of this expression we find the coordinates of the
edges of the plates of the reflected system: ‘

Gy= ;—f_—;- [¢(¢+0—5V(¢+{)’—w—ﬂl.

a
P

o lew+atg—sV@rdrar—w—m).

Inasmuch as the geometric parameters of the converted system
are now known, 1t 1s possible to consider the problem of determination
of 1ts capacitance in the normal way (presentation of the plane of the
section of this system as the plane of a complex variable was only

an auxiliary method necessary for construction of the converted
system).

Using, especially, the method of direct determination of field

strength (see § 2-6), 1t 1s possible to obtain that the capacitance
of the converted system is

Cy = 258 -
where K(k) and K'(k) = K\fi - k2) are complete elliptical integrals
of kind I with modules being determined by formula (2-24).!
Specifically, when a = b (circular cylinder), the expression for the

!The basic concepts relating to elliptic integzrals are given
in Appendix 1,
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module of elliptical integrals takes the form:

,_V(«—a)(u+c+n
Ga+d)ctd—a)

Inasmuch as capacitance 1s invariant relative to conformal
conversion, formula (2-1) determines the capacitance of the system
depicted in Fig. 2-1b. Thus, the sought capacitance of the initial
system (Fig. 2-1a) 1s determined by the expression

Ci= “_K;.
- X
Example 2-2. Let us determine the capacitance (per unit of

length) between two conductors, each of which is formed by the
Joining of two infinitely long bands depicted in Fig. 2-2a. Using
the general features of capacitance (§ V-2), i1t can be established
that the sought capaclitance cZ is four times as great as the capaci-
tance C1Z of the auxillary system shown in Fig, 2-2b,

C; = 4Cyy.

a)
'n
¢
%
N

Fig. 2-2. 8System of two conductors, each of
which 18 formed by the Joining of two symmet-
rically located infinite bands: a) initial
system; b) auxiliary system obtained by means
of cutting the initlal system with the plane

of its symmetry; c¢) reflected system in plane Z.

’
To detect capacitance c1Z we use the method of conformal con-

versions. Taking the plane of sectlon of the auxiliary system as
the plane of the complex variable 2, let us select the reflecting
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function in the form of (-;--l'-t'. which, as 1s eviderni. from Table 2-1,

converts the auxlliary system considered iato a system of two plates
lying in one plane (Fig. 2-2¢). The capacicance (per unit of length)
between these plates 1s determined by the above formula (2-1) if the
modulus of ellliptical integrals 1s assumed to be in it

E @+ +d) _
2 YT (e=2)

Thus the sought value of capacitance is

c =8 X,
K

where the value of the module of integrals 1s determined by expression

2=3. The Method of Spatial Inversion

The method of spatial inversion®! is applicable during calcula-
tion of capacitance of solitary conductors in a homogeneous medium
and 1s based on the use of geometrical conversion of the surface of
these converters by their reflection reflective to the sphere.

Reflection (or inversion) relative to a certain sphere of radius
RO (the radius of inversion) is geometrical conversion in which any
point with spherical coordinates »; 6; ¢ becomes another (inverted)
point with coordinates Rg/r; 6; ¢. The locus of inverted points of
a certaln surface forms an inverted surface, which in a number of
cases has a simpler form than the original. The determination of
inverted surfaces is carried out either according to an assigned
equation of initial surfaces (by replacement in it of the coordinate

r with the coordinate r, = Rg/r) or by means of direct construction.

Do not confuse with the method of plane inversion (reflection
relative to a circle), which 1s 2 special case of the method of
conformal conversions.
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The latter 1s substantially fecilitated by the fact that spatilal
inversion keeps constant the angles between any two intersecting lines.

In using the method of inversion one ought to have 1in view that
a reflection relative to a sphere 1s reversible; therefore, any of
the surfaces that correspond to each other can be considered both
original and inverted.

A number of very simple examples of inversions are given in
Table 2-2. The capacitance of a solitary conductor the surface of
which 1s converted by means of reflection relative to a sphere can be
determined according to . rmula [2-5]

Co= 4ns-R1.V,, (2-3)
where € 1s the specific inductive capacitance of the medium; V0 is
so-called normalized potential in an inverted system.

To determline potentlal V0 it 1s necessary:

1. Considering an inverted surface a surface of a grounded
conductor (V = 0), to dispose 1n the center of inversion a point
charge q, numerically equal to =lne.

2. Having calculated the electrostatic fleld of the shown
point charge inside the grounded inverted surface,'! to find the
density of the charges induced on this surface from the relatiorship

du
o= —s30]; .

where u is the potentlial of the found electrostatic fleld, and n 1s
the internal normal to the inverted surface s.

3. Using formula (1-3), to find Vy as the potentlal in the
center of inversion being induced by induced charpes.

!This problem coincides with the determination of th: Green
function for an inverted surface (see § 2-6).
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Table 2-2. Spatial inversion of certain very simple

surfaces.

Initial surface

Inverted surface

Sphere of radius R encom-
passing sphere of 1lnversion
and concentric with it

A sphere of radius
. Rt
R.--#L. encompassed by a

sphere of inversion and
concentric witn it

A sphere of radius R the
center of which is at a dis-
tance of b(b > R + Ro) from

the center of inversion

A sphere of radius

R, =R} + the center
B¥—R?

of which 1s at a distance
RS

il =—2— from the cen-
of h=p

ter of inversion

A sphere of radius R passing
through the center of
inversion

A plane passing at a
distance of h-% from

the center of inversion

Circular disc of radius R
perpendicular to the radius
of a sphere of inversion at a
distance of A from its center

’O'-{“\
)

’

i 1
-

\
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Part of the surface of a
sphere of radius R.--iL.

cut by a right circular
cone the peak of which 1o
2

R
at point (ﬂ‘*?:) the anpgle

at the peak 1is c=2ndg—’:-
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With the simple form of inverted surface the calculation of
electrostatic field necessary for the cdetermination of VO is simpler
than the initial problem of calculation of capacitance. Specifically,
when an inverted surface if formed by the intersection of several
planes, the electrostatic field of a charge 99 inside a grounded
inverted surface can be calculated using the principle of mirror
reflections, and the pctential is found simply as the sum of the
notentlials of reflected charges.

Example 2-3. Using the method of spatizl inversion, let us
determine the capacitance of the same conductor as in Example 1-4
(two spheres intersecting at right angles).

Considering the meridional section of this conductor (Fig. 2-3a),
let us dispose the center of inversion at one of the points of
intersection of circumferences, for example, at point A, and let us
take the radius of inversion equal to the diameter of one of these
circumferences, for example, RO = 2n,

L[]

Fig. 2-3. The conductor formed by two spheres
intersecting at right angles with radii aq and b
(a > b): a)is the section of the initial and in-
verted surface; b) is the system of mirror reflec-
tions of charge 9 = -4re, located at the center

of inversion relative to the inverted surface.
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As 1s evident from Table 2-2 or from direct construction, the
inverted surface in the given case is formed by two semi-infinite
rlanes intersecting at an angle of m/2 at point B', which 1is the
initial surface inverted for point B.

Placing further in the center of inversion a negative point
charge ER =-lre, we take the potential of the inverted surface equal
to zerc. Constructing then the system of mirror reflections of this
charge relative to the shown half-planes (Fig. 2-3b), we find that

[

1 b
t\-_+———'—==-
@ 4 Y aare

Substituting the value of V0 into formula (2-3), we have

Cor ‘"“'T'a' (l + -;-—m-) - dria (l'+ -;:——T/qfﬁ-) .

which coincides with the formula obtained in Example 1-U4 by the
method of equivalent charges.

2-4, The Method of Symmetrization of Conductors

The method of symmetrization is used in lower estimation of the
values of the capacitance of solitary conductors in a uniform medium,
and 1s based on utilization of geometrical conversion called
symmetrization.

In general symmetrization can be defined as geometrical con-
version of a spatial or planar body which permits reducing it to a
form symmetrical relative to a certaln plane or axis.

The symmetrisation of the spatial body relative to a plane
(so-called spatial symmetrization of Steiner) is carried out in
the following manner.

Let there be a certain spatial body 4 and any plane P (plane of
symmetrization). Drawing through every point of the surface of
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tody 4 straigh. lines perpendicular to P, plotted on the=c straight
lines symmetrically relative to P are segments equal to the total
lengths of the chords being cut on the straight line being considered
by body A. The locus of the ends of such segments forms the surface

e of a new body symmetric relative to plane P. Thus, for instance,
! a hemisphere of radius a with symmetrization relative to any plane
parallel to its base becomes a condensed spheroid with axes 2a
and a.

Completely analogously carried out is symmetrization of the flat
body relatlively to any straight line in its plane. One of the
examples of such symmetrization is given in Fig. 2-4,

a) = Fig. 2-4, The symme-

' trization of an arbi-

trary flat plate: a)
initial; b) symmetrized

E b) Ez’ EE B plate.

Symmetrization of spatial body relative to an axis (Schwary

symmetrization) consists in the following.

Given a certain spatial body A and any straight line L (axis of
symmetrization). Drawing through the points of the surface A planes
perpendicular to L, plotted at each of them is a circle with center

at L cyual in area to the section of body 4 by the plane being con-
sidered. The locus of such circumferences forms a surface of new,
axisymmetric body. Thus, for instance, a cube with side q with this
means of symmetrization relative to the axis parallel to one of its
ribs becomes a right ce¢ylinder with altitude a and radius av/7.

Apart from this there are other, less widespread means of

i ™
v AR A 25 o ne

symmetrization.

BRI
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Use of the method of symmetrization when evaluating capacitance
is based on the fact that capacitance by any means of symmetrized
soilitary conductors never exceeds the capacitance of these conductors
in their original form [1-3], i.e., Cocum < €o+ Therefore, having
determined in one way or another the capacitance of a symmetrized
conductor, the lower boundary of capacitance of the conductor of
initial form can be determined in the same way.

If after a single symmetrizatior. the form of the conductor still
remains so complex that the capacitance of the symmetrized conductor
cannot be found, then symmetrization is carried out repeatedly, until
the form of the symmetrized conductor is simple enough.! Thus, the
method of symmetrization permits determining the boundary for the
capacitance of a solitary conductor of a form no matter how complex.

Example 2-4., Let us find the lower boundary of the values of

the capacitance of a flat plate in the form of a semicircle of
radlus aqa.

The capacltance of a conductor of the form considered cannot
be accurately calculated by existing methods. Therefore, we deform
the conductor in advance by means of planar symmetrization relative
to a stralght line parallel to the base of the semicircle. The form

of a conductor thus symmetrized can be determined in the following
manner.

Let us introduce rectangular coordinates (x, y) with origin at
the center of the semicircle, having comblned the Ox axis with its
base. Then the connection between the coordinates of points on the
contour of the initial (x, y) and symmetrized (ml, yl) plates will
be determined by the equations

SO TN 77 = ARV

'With an infinite number of symmetrizations the surface of any
conductor of spatial form 1s converted into a sphere.
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Hence —L-+ 0
at

: <=1 1.e., the symmetrized conductor has the form of a

planar elligtical disc wlth axes 24 and a. The expression for the
capacitance of an elliptical disc is known [see formula (U4-3)].
Using 1t, we find that the capacitance of a plate in the form of a
semicircle of radius aq satisfles the inequality

G > = 8:a+0,729.

2-5. The Method of Small Strains

The method of small stralns is based on replacement of con-
ductors of assigned (complex) form with other conductors of close
but simpler form, which permits calculating electrostatic field or
directly determinlng capacltance.

The strain of the surface of a conductor (as of any other body)
is commonly called small, i1f the displacement of the points with
respect to the normal to the surface of this conductor () is con-
siderably less than its characterilstic dimenslions and 1s a continuous
functlon of surface. Under these conditions the potentlal and strength
of the electrostatlic fleld of the electrocdes, Just as thelr capaci-
tance, can be presented in the form of an exponential series of h,
the zero term of which characterizes the electrostatic field (or, the
capacitance, respectively) of an unstrained electrode. Limiting
ourselves to this or that finite number of terms of this series, it
is possible to obtain approximation expressions for an electrostatic
field or the capacitance of the conslidered electrodes of complex
form. The characteristlics of utilization of the method of small
strains depend on the number and form of conductors entering the
system considered.

Let us conslder for example, the problem of determination of
the capacitance of a solitary conductor of "almost spherical" form



[2-6], 1.e., of a conductor the surface of which § can be determined
by an equaticn of the form

r=RIE3E DL (2-4)

where r; 6; ¢ are spherical coordinates of the points of the surface
of the conductor; RO 1s the radius of a certaln sphere close to the
surface of the conductor considered ("reference" surface); 6(8; ¢) is
the comparative amount of the normal displacement of the points of
the surface of the conductor from the surface of the sphere:

v 9)-5‘;';—.9-: B Dl<t.

The quantity §(6; ¢) can be presented in the form of §(6; ¢) =
= SO-F(G; ¢) where 60 is the comparative normal displacement at any
fixed point of the surface of the conductor; F(6; ¢) is the function
which characterizes the distribution of normal displacements with
respect to the surface of the conductor, and

PO o)=F(% 9+ 2)-
Assigning the fixed quantity of the potentlial of the surfice
Vh.-*l, . (2"5)

we will search for the potentlial of its electrostatic field in the
form

V=2 wine e (2-6)

where D and Vl(r; 0; ¢) are the constant and function to be determined,
respectively.’

Substituting thls expression into the boundary condition (2-5),
we find that

- D
Roll -+ 4F (3 9

+ %V, (Roll +3%F (8 o)1 O ¢). (2-7)

!Let us note, that the given means can be generalized to the case
when the "reference" surface selected is any (not only spherical)
surface the form of which admits the solution of the external problem
of Dirikhle for the Laplace equation.
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Expanding the right side of thls equatlon into an exponential
serlies of small parameter 60 and retaining the terms of this series
contalning 60 to a power not above the rirst, we obtain

D D . s ] -
g A —F@®; 5)— + Vi (Re % 9)]- »
A R.+t.[ F@; 5) R 1(Re v). (2-8)

Inasmuch as the left side of equation (2-8) does not depend on
6 and ¢, the right side of 1t also should not depend upon these
quantities. Thls 1s executed, especially, on condltion that

'—'F('; f)‘%-i-Vl(Roi Gy=0 (2=9)
- [ ]
From (2-8) and (2-9) it follows that

Dwm A..R.;
ViRe: 8 ) = AF(8; » (2-10)

The last of the given equations can be considered the boundary
condition for determination of a harmonic function Vl(r; 6; ¢) at
any polnt of an area outside a sphere of radlus Ro. Thereby the
boundary surface of the problem was deformed into a sphere. Determi-
nation of Vl(r; 8; ¢) with such a form of boundary surface can be
carried out with any assigned type of function F(8; ¢) by the method
of distribution of variables (see, for example [2-T7]).

Substituting the expression found for Vl(r; 8; ¢) in (2-6), it
is possible to obtaln the approximation formula for the potential
of the electrostatic field of the conductor considered, and then,
using the general expressions (V-18), (V-1), approximately to find
1ts capacitance. The approximation formula obtained by such a method
for the determination of the capacitance of a conductor of "almost
spherical" form has the form

Co = 424Ry (1 4 SM), (2-11)

where M 1s tThe coefficient with the first term of the expansion of
function Vl(r; 8; ¢) into an exponential series of 1/r. In general

n




this coefficient is determined [2-7] by the formula
' * ]

If the conductor is axisymmetric, then

M--;—EF(O)EIM‘. (2-12a)

If more accurate foirmulas must be obtained, the equation of the
surface of the conductor can be assigned 1n the form

r-n,[|+:§ngr.(o; ,)].

where
. .

In this case, finding the potential of the electrostatic field
in the form

[ ]
LR LAY

and using the given method, it is possible to obtain the following
approximation formula for the capacitance of a conductor of "almost
spherical" form

Coox =R, (14 BM, + UMy + .. . +3M,),

where M 1is the coefficient at the k-th term of the expansion of
function V(ry; 0; ¢) into an exponential series of 1/r,

Example 2-5, Let us determine the capacitance of a solitary
conductor of axisymmetric form the section of which is described
by the equation

r = Rell +Yg(cost0—cos®), |%|< 1.
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With the assigned type of equation of the surface of a conductor
it capacitance can be determined only as a first approximation:
F(8) = cos2 8 - cos 8. Substituting this expression F(89) into formula
(2-12a) and integrating, we find that ¥ = 1/3. Then in accordance
with (2-11)

Co = 4mR.(l + %’-).

In using the method of small strains to calculate capacitance
in a system of two conductors, it 1s possible to make use of the
fact that the relative change in capacitance between any two con-
ductors with any strain of them is expressed [2-8] by the formula®

A_C.B‘I,‘E’.E.a

= 2 , (2-13)
. (L‘ o

where AC 1s the absolute value of the change in capacitance; ¢ 1s

the initial capacitance between conductors; 51 and 32 are the strength
of an electrostatic fleld before and after strain, respect%xely;

v 1s the volume of space in which the electrostatic field being
considered exists (1{ one conductor wholly encompasses another,

then v is the volume limited by the surfaces of the electrodes);

Av 1s the change 1n v as a result of the strain of the electrodes.

If the straln of the conductors 1s small, then E. =E =¢ and

1 2
EthdS
_A£=.§ g (2-14)
c § Evdo-
"

where 5 1s the Initial surface of the conductors; h 1s the quantity
of the normal mixing of the polints of an initial surface during strain.

!The given formula can be generalized also to the case when the
media filling the space between electrodes is heterogeneous. In
thls instance the specific inductive capacitance of the medium should
be 1ntroduced by a factor into the subintegral functions of the
numerator and denominator.
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Formula (2-14) allows approximately calculating the capacitance
of any little strained system of two conductors, if only the electro-

static fleld of this system in 1ts 1nitial state is known or can be
found.'

Example 2-6. Using the method of small strains, let us find an
approximation expression for capacitance (per unit of length) between
two noncoaxial cylinders, one of which encompasses the other (Fig. 2-5).

Filg. 2-5. System of two
infinitely long cylinders
\ with parallel axes dis-
v placed a distance of d
from one another.

If d < »r < R, then the system belng considered can be presented
as the result of the small straln of a system of two coaxial cylinders
with radii R and r. Introducing polar coordinates p, ¢ with center
at point 0, we find that for any value of ¢ the amount of the rnormal
displacement of the surface of an interior cylinder is

R Vg e |

The strength of the electrostatic fleld in the space between
the coaxlal cylinders is determined by the known formula

R 1

B -'-—'A——-C-—- ——

R—r p

where A 1s the difference in potentlals between cylinders.

It is understandable, that any of the surfaces considered can
be taken as the initial and strained surfaces.
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Taking into account that in the case being considered dS = r-d¢;
dv = pdpdé and substituting the obtained values for kA and E in
formula (2~-14) we find

R A T o

AC;

-~

-t

where E(d/r) 1s the complete elliptical integral of kind II.

From the general features of capacltance shown in § V-2, it
follows that the increase in capacitance induced by the strain con--
sldered 1s positive, on volume CZl = CZ + A, where CZ and CZl are
the capacltances between coaxlal and nonczexial cylinders, respectively.
Using the known expression for CZ’ we obtain the following approxima-
tion formula for capacitance (per unit cf length) between two non-
coaxial infinitely long cylinders:

I L-(%)'

To evaluate the 1naccuracy of this formula let us compare it

c,,_-_a‘;_ pp 21 [-;...u(%)]], (2-15)

with the known accurate expression for capacitance between ncncoaxial
cylinders, which has (see § 5-=4) the form

"Cpy = 28 (2-16)

11" we obtaln, espeeially, r/R = 3.5, d/r = 0.3, then using
formula (2-15) (CZl/2ﬂe) = 1,53 while the accurate value of this
quantity calculated from formula (2-16) 1s equal to (CZ/Zne) = 1.48.
Thus, the comparative 1lnaccuracy of the calculation from formula
(2-15) in a given case 1s 3.4%.
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2~6. Methods of Auxiliary Functions

Methods of auxiliary functions consist in simplification of
problems of calculation of electrostatic field (and respectively of
capacitance) of conductors with their constant geometric form.

These methods are: a) the method of function of source (the
method of Green); b) the method of direct determination of field
intensity; c) and the method of consecutive approximations.

The first of the shown methods allows reducing uniform? boundary
conditions assigned on any surface to zero conditions; the second
. method makes it possible to replace compound boundary conditions on
the surface of some plane-parallel systems with uniform boundary
conditions; the third of the enumerated methods allows simplifying
compound boundary conditions on the surface of some typical systems.

The method of function of source 1s based on use of the formula:
N | a0

where VN is the potential at a certaln polint N inside the closed
surface S; n 1s an interior normal to this surface, and G 1s a Green
function of kind I determined in the following manner:

a) at any point inside surface S function ¢ = % + f, where » 1s
the distance from point ¥ to a random point lying inside surface S or
on this surface itself; f is a random harmonic function (hence 1t
follows that function ¢ 1s also everywhere harmonic, except point
r = 0, where 1t has the feature of type 1/r);

'let us recall that uniform boundary conditions are boundary con-
ditions in which the values of one ard the same function are assigned
on the entire houndary, and compound boundary conditions are boundary
conditions in which the values of various functions are assigned in
Individual sections of the boundary surface (for example, in one
sectlon of the houndary surface potential is assipgned, and in another
1ts normal derivative is assigned). The solution of the boundary
problems under compound boundary conditions, as a rule, 1s considerably
more complex than under uniform boundary conditions.

46

H
1
H

- g i




e s S

iornrep e persnes

pryorn - eren
SUNPIURRRES

PRSP VP st et v+

b) at all points of surface S function ¢ = 0.

Formula (2-17) makes it possible to calculate the electrostatic
field inside surface S, if the values of the potentials on this
surface are assigned and the Green function G 1s found.

From the given determination of the Green function, it 1s evident
that it colnclides with the potential of the electrostatic field of
a point charge numerically equal to 4me and in a volume bounded by a
grounded metal surface S, i.e., inside a surface with zero boundary
conditions. Determination of this auxiliary function in a number of
cases 1s simpler than solution of an initial problem with nonzero
boundary conditions. Therefore, the method considered is widely used
both in the calculation of electrostatic fields, and in the direct
calculation of the capacitance of a number of conductors.!®

The method of direct determination of field strength is used to
calculate a certain class of flat electrostatic fields with compound
boundary conditions. This method 1s based on the preliminary determi-
nation of auxiliary function yv(x, y) expressing the size of the angle
formed by the vector of electrostatic field strength at any point of
the area considered with one of the axes of the Cartesian system of
coordinates. Function y(xz, y) is harmonic [2-9]: it satisfies the
two-dimensional Laplace equation. Boundary conditions for this
function can be established from conditions of orthogonality of power
and equipotential lines of field and, as 1s seen from the illustration
given in Fig. 2-6, can be uniform even when potential is assigned in

one part of the boundary surface, and its normal derivative 1s assigned
on the other.

In connection with this the problem of calculation of function
y(x2, y) proves to be considerably simpler than the initial problem
of calculation of potential under compound boundary conditions.

'Thus, calculation of capacitance by the method of spatial
inversion actually boils down to computation of Green function at
the center of inversion (compare with § 2--3).
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Fig. 2-6. Boundary conditions for a
potential and an angle y(x, y) in the case
of a system of plates lying in one plane.

Having found this auxiliary function, it is possible then directly
(passing the stage of determination of potential) to find the modulus

of the strength of the electrostatic field of the system of conductors
being considered from the relationships:

& __9(nfE]|)
oz oy

o __ 2] (2-28)
LI

%

From (2-18) it is possible, especially, directly to determine
the modulus of the strength of a planar electrostatic field created

by 4 system of any number of charged infinitely long plates lying
1. one plane.

In the points of this plane (y = 0) the modulus of the strength

0 the electrostatic field of the system considered is determined
by the formula

8/ T [e—sf +

y-0 =

[]
n |8-a.|

where xo;s Yoq aTE coordinates of the special points of the field,
i.e., of points in which E = 0; m is the number of special points;
a is the coordinate of the edges of plates; n is the number of
plates; B is a constant determined (along with the constants Z0;

ug
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and in) from assigned charges or potentials of conductors. 1In
particular for an electroneutral system consisting of two plates
(Fig. 2-7),

T TIPE  E—
y=0 Vl(’-ﬂa)(!—d.)(x—a,)(x—a‘)‘ (2-20)

Using formula (2-20), it is possible to find that the difference in
potentials between the plates is

V:—Vs=j'll’-'l,.odx=3f———-——~" (2-21)
& L

Ve—a)x—adl—n(0—»
and the charge per unit of length of each plate is

dx

--;—_-=—_.____-————=. 2=22
S "V (€ — a)) (a3 — %) (a5 — 5 (a, — 2) ( )

:=21S|Elyvodx=2:8
a

Fig. 2-7. Two infi-
nitely long plates
z lying in one plane.

Calculating the integrals entering expressions (2-21) and
(2-22), we find that the capacitance (per unit of length) between the
plates considered is

et o KM
G Vi—V, 2'&(&)’ (2-23)

where K(k) 1 the complete elliptical intepral of kind T with modulus

.ka | (aa—a,)(a.—al) R

e (a—a)(a;—ay’

=K (Y TF).

(2-24)
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The method of direct determination of field strength is especially
effective in conjunction with the above (§ 2-2) method of conformal
conversions. Thus, because of invariance of capacitance during
conformal conversion, formula (2-23) determines the capacitance
between any two infinitely long conductors, which as a result of this
or that conformal conversion can be reduced to the form shown in
Fig. 2-7. 1In this instance the coordinates of the edges of plates
are determined from assigned parameters of the initial system with

the ald of an appropriate reflecting function (see Examples 2-1 and
2—2) .

Lxample 2-7. Let us determine the capacitance per unit of length
between the conductors presented in Fig. 2-8.

Y Fig. 2-8. Three infinitely
’ -2 | long plates lying in one
o\ -4 -a\| o & o plane; plates 2 and 3 are
. * interconnected.

From the type of system considered it follows that in the
electrical field induced by it, only one special point can exist
which is located on plane y = 0; a; < o < @y Therefore, assiming
in formula (2-19) Yo; = 0, and m = 1, we obtain that the modulus of
the strength of the electrostatic field on plane y = 0 is

|s'|,_.-a—/-=——'_A_—__.
V(2 —d) (#—a}) (~a})]|

Taking into account that the difference in potentials between
electrodes 2 and 3 is equal to zero, we find

c i (£ — x¢) dx =0,
J 1 i#=d)(a}—7)(d—5) -
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whence
('. x-dx
£— —
e -‘( “g=)4 ”),ﬁ Kt
* - "K(k,)
él (F-a){a -2 —=) -
l.e., .
h{/ré-d, y /@ #
| d—d

Using the expression found for fleld strength, we find, that
the charge per unit of length of every conductor is

. 1=2st§‘,‘ 2 —x")d'\ =
V (# =) (e "“z)(“a“)

= 2B¢ ———..-.:;-..—_'_— [K (k' . K (k) ——(ﬂ-]
K (k)

where ¥. )/ 1=#: &V 1§

The difference in potentials between the conductors consldered
1s

-,

Ve Vos Vy—Vy = B S (o + x) dx __BK Gy
1—vr:= -~V

(2 — ad)(ad— %) (af — »* ]/ ag—af.
| ) ) )

"“a

llence we obtain the following expression for capacitance per unit
of length of conductors consldered:

!

£ = Vs K (k) K (k)

The method of successive approzimationa of boundary condltions
allows reducing the solutlion of certain problems on calculation of

51




an electrostatic field with complex boundary conditions to the solution
of a succession of simpler problems. No general method of creating
this succession exists at the present time: selection of the initial
approximation and method of construction of successlive approximations
depend upon the type of this or that concrete system. Let us 1limit
ourselves therefore to illustration of the method of successive

approximations in the example of the calculation cf the capacitance
of a flat circular ring [2-10].

The problem of determination of the capacitance of a flat
circular ring under a strict posing requires the calculation of
electrostatic field under compound boundary conditions, and the plane
on which boundary conditions of various type are assigned has 2
boundaries! (» = @ and r = b). Solution of such problems 1s very
difficult, while the procedure for solving compound problems with
one circular boundary of boundary conditions 1s develored to a con-
siderably greater extent; therefore, we replace solution of the initial
protlem with solution of a suecczssion of compound problems with one
boundary of boundary conditions.

In the first approximation we replace the ring considered
(Fig. 2-9a) with a circular disc of radius » = a (Fig. 2-9b). Using
the fact that the capacitance of any conductcr is greater than the
capacitance of any part of 1t, we arrive at the lnequalitiy

0 < Czzina < Cpuckas

which gives a rough estimate of the upper and lower limits of the
capaclitance of the ring

To get a more accurate estimate we go to the second approximation,
which we construct in the following manner:

a) having assigned the potential of the disc (4) and having
calculated the field of the system in Fig. 2~9b, let us find the

! ubqequpnt;y we will call such lires boundaries of boundary
<ondition
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Fig. 2-9, To the creation of a system
of successlve approaches for calculation
of capacitance of a plane circular ring:
a) initial system - a ring with radii a
and b; b) 1st approximation - circular
disc with radius aj c¢) 1lst auxiliary
system; d) 2nd approximation; e) 2nd
auxiliary system; f) 3rd approximation.

charge on the surface of the disc ol(r) and the potential in its
plane Vl(r) at r > aj

b) 1let us build an auxiliary system (Fig. 2-9¢) in the form
of an Infinitely extended plane, in part of which » < b charge
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distribution is assigned oz(r) = -ol(r)s and in the remaining part of
which potential 1s equal to zero;

¢) having calculated the field of the system in Fig. 2-Yc,

let us find the charge density and distribution of potential on the
boundary surface;

d) superimposing the systems depicted in Fig. 2-9b and 2-9c,
we obtain the system boundary conditions for which is shown in
Fig. 2-94d.

The buillt system differs from the initial system in that in it
the ring 8 = 0, a < » < b is 1n the field of positive charge
distributed with density oz(r), but retains the same potential (4)
as in the initial system. IHence 1t follows that the complete charge

of the ring in the system of Fig. 2-9d is less than the true charge,
and

, ‘gL-:.—Q""<cl§m<cuab
where Ql is the complete charge of the surface a < » < b 1n the

system in Flg. 2-9b; 02 is the complete charge of the surface
a <r <b in the system in Fig. 2-9c.

The method of construction of the third approach 1s analogous to
the one considered: 1t 1s based on solution of the auxiliary problem
of finding the distribution of charge induced on a grounded flat
disc of radius a with negative charge distributed on part of plane
r > a with density 03(r) = -oz(r) (Fig. 2-9e), and on the subsequent
superposition of the systems shown in Filg. 2-94 and 2-9e.

In a new auxiliary system thus built (Fig. 2-9f) a ring with
potential 4 is located in the field of positive charge distributed
over the surface r < b with a density of 03(r). The complete charge
of the rines in thls system 1s greater than In the second approxima-
tlon, but as before 1t 1s less than the true charpe; therefore,
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we obtain a more accurate inequality for the capacitance of the
ring in the form

Q +?' +Q < Cromea < Caseane

where Q3 1s the complete charge on the surface » < » < g in the
system of Flg. 2«9e,

All the subsequent approximations of even order are bullt in the
same way as the second, and those of odd order are bullt in the same
way as the third approximation. As a result we arrive at a con-
vergent serles of boundary conditions. In every subsequent approxi-
mation the complete charge of the ring is increased, remalning less
than the true value, while the potential of the ring remains constant;
therefore, the capacitance of the ring 1s determined with ever greater
accuracy.

Detalled computations of the capacitance of the ring by the
method of successive approximations are given in [2-10].
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PART TWO
CALCULATION FORMULAS, TABLES AND GRAPHS

1. The material of this part is divided into three chapters.
In Chapter 3 the data are given on the capacitance of wires, in
Chapter 4 data on the capacitance of flat plates, and in Chapter 5
data on the capacitance of wires in the form of open and closed shells.

In all these chapters it is assumed that the medium surrounding
the conductors 1s either uniform in infinite, or is bounded by one
flat impenetrable boundary. In the latter case capacitance 1is
calculated by means of analysis of the auxlilliary systems of conductors
located in an infinite uniform medium and obtained by means of a
single mirror reflection of the initial system (see § V-2).

2. At the beginning of every chapter general remarks are given,
in which the geometric forms of the conductors considered are briefly
scanned, and the general characteristic of the data given on their
capacltance 1s given.

3. The material of each chapter 1s arranged in increasing order
of the number of conductors that form thls or that system.

One ought to take account of the fact that the system formed
by the union of several conductors is considered one conductor;
in this case the effect of the connecting conductors on the capacitance

of a system 1s assumed to be negligible,

i, For the majority of the systems of conductors considered
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both accurate, and approximation formulas are given with indication

of the limits of their applicability and accuracy. The latter is
characterized by relative error

3 e Q1o —Copnsa 10084,
Crona

where C and ¢ are the accurate and approximation values of
TOMH npubn

capacitance, respectively.

5. References to operations used in obtaining individual
formulas, as a rule, are not given. However, for some typical

systems the basic results obtained by various authors are briefly
compared.
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CHAPTER 3

CAPACITANCE OF WIRES

3-1. General Remarks

1. In this chapter formulas are given for calculation of the
capacitance of wires, 1.e., of conductors the form of which satisfies
the conditions shown in § V=2, 1In all cases when nothing 1s saild

to the contrary, it is assumed that the form of the section of wire
is circular.

2. In all the formulas below the distance between wlres is
understood to be the distance between thelr axis.

3. All formulas given in this chapter are approximation formulas,
and a majority of them are obtained by the method of mean potentials.

4, The limits of applicability of the given approximation
formulas depend upon the relationship of the sizes of a wire and of
the form of 1ts axis; in most cases accuracy of formulas 1s evaluated
by solving numerical examples.

3-2. ''ne Cupacitance of Solitary Conductors Formed
by Wires Arranged in Infinite Space

l. The rectilinear wire of finite length (Fig. 3-1).

Com e S
5= ln L 0,300 _ 01T __0,8619 (3-1)
‘ oL (lu—:-)'

(]3] < 1,0% when {/a> 10).
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Fig. 3-1. A rectilinear wire
of finlte length.

When greater inaccuracy is tolerable, the followlng less accurate

formulas can also be used:

C.:s - 2
g | a o (3-2)
Arsb — += _1/;.'._.”

Com
TR

(3-3)

Example 3-1. To determine the capacitance of a rectilinear
wire in air 7 = 0.5 m long and a = 0.025 m in radius.

To determine capacitance let us make use of formulas (3-1)=-( '=3).
Taking into acccunt that for air l-to-fa-:lo"' F/m, and using the

formula (3-1), we find

G~ —3 2".001:7 =
In =2 e 0,307 — —2 - 05052
0.925 . I 0,8 [|
-0t 08 _10-® 05 _

%= 2,995 — 0,307 — 0,059 - 0,0814 18 2568
=108:10* F= 108 pF;

At calculation from formula (3-2) analogously we ohbtaln

Coce X .10-? I
. %z Arsh 05 +_ 14+ 0,025\8
oozs 05 ( 0.5)
» o :
10805102 F= 10,18 pF.

18 273

Minally, using formula (3-3) we find

2= 10_9_05

ol np, pF.
s imvo—1 = 103.10-* F . 10,3

C. o«
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With respect to the result obtained using formula (3-1), the
inaccuracy of calculation from formulas (3-2) and (3-3) in the case
considered is respectively 6 and 4.6%.

2. A wire, bent along the are of a circumference (Fig. 3-2).

Fig. 3-2. Wire bent along the
arc of a circumference,

CoS—T::—"—‘—-' (3-4)

ne————]

113} € 2,0% wien R/a> 10),

where © 1s the central angle of the arc (in radians); I = 6R 1is the
length of the wire; I is a parameter the numerical values of which
are given in Table 3-1.

Table 3~1. Value of parameter I,
which enters formula (3-4).

% deg ! Ydeg | % deg 4 % deg
) 0, 0000 ) 20 0,7529 0
5 0,1052 355. 95 0,7715 | . 265
10 |oiw8m | 350 10 | 07887 | 260
15 0,249 345 105 0,8047 25

20 0,3000 340 110 0,8195 20 -
b3 0,3506 35 115 0,8332 245
30 0,3968 330 120 0,8458 240
33 0,433 325 125 0.8572 25
i ] 0,4788 320 130 0,8676 20
45 0,5151 315 135 0,8774 5.
50 0,5492 310 140 0,8852 20
56 0,5800 305 145 -§ 0,8925 218
60 0.6107 300 150 0,8988 210
65 0,6385 295 155 0,904} 205
70 0,6645 290 160 0,9083 200
7 0,639 285 165 0,9117 195
- 80 0.7117 280 170 0,9141 190
85 0,730 5 176 0,9155 188
90 0.7529 0 180 0,9160 180
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3. A wire in the form of a eircular ring (Fig. 3-3).

Fig. 3~3. A wire in the form
of a circular ring.

. C. o~ ‘S'IR

: (3-5)
IBT

(13] < 2.0%yhen Rla> 10

Example 3-2. To determine the capacitance of a circular ring
and semiring in air and having a radius R = 0.1 m, the diameter of
a section 1s 2 a = 0.01 m -o.OIA(nac.--a—;;.lo-' F/m).

Using formula (3-5) for the capacitance of the ring we obtain

42.0,1.10~°
8.0,1

Co ~08,87:.10"2 F= 6,87 pF,

To determine the capacitance of a semiring we preliminarily
find from Table 3-1 the value of parameter I. When 6 = 7 parameter

I = 0.916. Thus, for the capacitance of the semiring considered we
have

, .
Cyo 221070 0.1 =3U.10 2 Fan pF.
Bz g BO0L_ 4o
0008 =

'he ratio of the found values of the capacitance a semiring and a
ring is 0.544, 1.e., the capacitance of a semiring is somewhat
greater than half of the capacitance of a ring of the same radius.
With decrease in R/a thls difference 1s increased.

4. Two interconnected parallel rectilinear wires of finite
length (Fig. 3-4).
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Let us examine several cases:

a)'b = 0 (Fig. 3-5), then
C. = 2t tn—24 -6
e L
where
Tl

aﬁ Al‘shil--l--:-'-— (i'-)'-l-l 5

elmte-y/aT)

LU

+l/(r. +(7.‘—'.)-l/(r) +"/(7':‘)+(5—1)J'

- ...[._,,/.+

where N= T +

28

20,
#ig. 3-4. The gen- Fig. 3-5. The
eral case of a soli- conductor shown in
tary conductor, Fig. 3-4, when b = 0,
formed by the union
of two parallel
straight wires.
When 2d/1 >> 1
C.z 4= = 1
nad-— L _ 030 (3-8)
a o




[T e A e

A =5 = TR T A S T A B ete = T, e -

Yhen 2d/1 << 1

C. = 4 ‘a.’ .

ln—i—-{-ln-’;——o,sll (3-9)

¢) b=l+2% a,=a=a (Fig. 3-6)

Cz!m' 4 - + g

l'&‘.li{l!l-';'-—qao‘l}+l’ 'ﬂ.{ln-"-:-‘-q.m}+f ) (3-10)

where

F e 21n Bruirn+VEarmins o) o+ Varm
[+ 0+ VET @00 [+ 4,4+ VET @8+ 107
+LIn2ththAVET @A L ]

Bin+ VT @t Ly
+1,1n M+l.+:.+Vw+(m+u+:,g_+
Bt b+ Ve @+ 1y
+V E+@+L +V E+ 2+ 4 —
—Ve+@+h+ 4y -V &+
d) d=; h=lyml gy=may=a; b=l+24 (Fig. 3-7).

4

Fig. 3-6. The conductor Fig. 3-7. Two joint
shown in Fig. 3-4, when identical wires, arranged
b = ll + 2h. on one stralght line.

When A > 1/4
rd

1 N+ -11

.c. o

5. Two interconnected intersecting or crossing rectilinear
wires of finite length.

a) General case (Fig. 3-8).
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ap - 3y — 22
ummzazi, (312

where

" (x:-x.) {'" [ﬁ:& b ‘/:(3—’05&_)']"'
¥ x,::. -]/-H-'(x.—‘.:m}"
e A D
+,,_.'.,, -y 1+ (v-:v.r :

B _'!l+ru-i'Fl:—Fg.L-
P - =) |

F,,=x,ln|y,—x,coscp+D,.,|+y,,lnlx,—y,coscp+0,,]+
.. _2_‘__ ‘P+y0;o _‘:_ °
+ G arclg (—-—TJ- tg 2).

D,y =V e+ =2ty cupt+d, p=1.2¢=12

ALNIYR Fig. 3-8. Conductor formed by

two intersecsting or crossing
rectilinear wires Pl and_P2 are

parallel planes passing through
wires 1 and 2, respectively;
P3 is a plane perpendicular to

Py and P2; d 1s the distance
between planes P, and P2; ¢ is

1
, ; the angle between wire 2 and
x, the proje-~tion of wire 1 on
<> plane P, (or, what amounts to the

same thing, between wire 1 and
the projection of wire 2 on plane
Pl); %, %5, and y,, y, are the
coordinates of the ends of each
of the wires reckoned along the
line of their location from
points 01 and 02, respectively.
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b) Perpendicular wires of equal length are located in one plane:

d=0;¢=1T/2;a:1-y1-h;z2-::1-y2-y1=Z(Fig. 3-9)

o~ it 4zed = ,
R T e e

Netin 248 O+%om 2MA+H

- A+ VRraap

SN EX TS TR TR

Fig. 3-9. Two perpendicular
lines.

When h = 0

CEeEe e

6. Several (n) interconnected identical parallel rectilinear
wires.

a) the wires are 1ocated in one plane at equal distance from
one another (Fig. 3-10).

Fig. 3-10. A system of n
identical interconnected
parallel wires in one plane at
equal distance from one another,

When d/1 << 1

‘2xanl

Co=

- ] d e
" (Iu <= o.ao1) +ia 48

(3-15)
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where

B= LS tnjm — 1) (r — my).

--l
The values of coefficlent B for n = 2-12 are given in Table
3-2-

Table 3-2. Values of the parameter B which
enters formula (3-15).

s |2 ] '} ] ] r ] ] 0 u (1}

8710]041,2¢4]2,2%]3,48]4,85|6,40]8,08] 9,8 |11,65]13,58

b) The wires are located evenly on the surface of a circular
cylinder (Fig. 3-11).

Fig. 3-11. A system of n identi-
cal interconnected parallel wires
arranged over the surface of a
circular cylinder.

C.z . 2zent | ’
In -%- e ) InT:- +82—~n—In [sln -,-;—-sln--ng--.. sln(";"l']
o (3-16)

When n = 2 this formula coincides with (3-9), and when n = 2-8
1L leads to the formulas shown in Table 3-3.

¢) the wires are located on the parallel edges of a rectangular
parallelepiped (Fig. 3-12).

Fig. 3-12. Four identical
rectilinear wires arranged on
the parallel edges of a
parallelepiped.
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Table 3-3. Capacitance of conductor shown in
Fig. 3-11 at various values of n.

F I I [
25
. /. ¢ ,‘ N %’ . Cpex - Qtll‘
[]
- g
. \..‘_—"

2 qy # ‘ ';' Com— aml
? s ln—¢-+3ln-k——2.6l5

g 5 _253" Cox —7 mn:
?n-;—-}-lln-i-&l”
q o 2 . —‘— c.ﬂ “ 'h.: Al
=N~ 8 o +8lo--—350 <
‘-‘é"'
5 8 -:— Cox T .6":
‘gt Tla—dH0
When d > 54
8xsl
Cg_-.
S (3-17)
2hd%a

kxample 3-3. To calculate the capacitance of the conductor

shown In Fig. 3-11, when I = 2.0 m; 2 a = 0.04 m; ”# = 0.5 m, at

varlous vaiuen of n.
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Using the formulas given in Table 3-3, we directly find

forn = 3
C.a Bre,.2.0 = 62,5.10" p'z 62,8 pF.
0&& J
for a=4 o
Ce s‘ e Z': = 728-10~1 F = 72,8 PF.
002 20 3y op— 21
for a=5§ ’ ‘
c.a '°"'a,6° = 79.5.10-8F = 79,8 PF.
"o 02 Ak lagg ¥
for a=¢
Co 12rey: ’;°o =835.1077 p= 8.5 pp
2 450l =2 —
ln 0B + 5,01!n 05 3.54
for a=8
Cox o lG:c.-Q;?o =01-1072FPu9 pF,
20 -4
n - +7:-ha=- 05 ,54

Hence it 1s apparent that with increase in the number of wires
from 3 to 6 the capacitance of the conductor being considered is
increased 34%, and with increase from 4 to 6 only 15%. This
evidences significant mutual effect of wires.

7. Rectilinear wires connected in the form of a polygon.

Approximation formulas for the calculation of capacitance of
conductors in the form of polygons of varlious type are given in
Table 3-U4, and give an inaccuracy of not more than 10%.

Example 3-4. Disregarding the effect of earth, to determine
the capaclitance of a frame antenna in the form of a square with
side 7 = 10.0 m with a wire 60 mm in diameter.

Using the formula of Table 3-4, we find that the capacitance
of the antenna considered is

Cyor 35402100

10,0
In——4-19
no“n+ 1

~ 0,22:10~%(P) = 220 pF,
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Table 3-4. Formulas for calculation of capaci-
tance of solitary conductors in the form of
polygons formed by rectilinear wires.

e Bmd | e JS—
.3
25 .
. : 6:.‘
? 1 | igquilateral Co=x TV
triangles i n ry + 1,8
?—‘- e ' lu'd
2 Squara ; . Cym 7
In -; + ‘.9'
. 12ze}
3 aegﬂh!‘ c.ﬁ -‘_—
hexagpn 1“7 +2,178
: ' ' 1
4 Isosceles Cp ox 4mel -——'—-—--l-
triangle _ ) In y + 2,18
am 40* ~
. 0,767
+ -————, :
b 1o - 42,31
a
' 0,433
5 Right Cy == 4zl : 4
triendle 1a = + 1,88
0% 0,5
+ et — !
ln-‘—+l.59 lu-—;.--l-l."

8. Wires connected in the form of spatial bodies.
u) The wires are located on the edges of a cube (Fig. 3-13):

C. - 24zel .

lu%-i_-‘.ﬁ ot

b) Wires are located along the directrixes of a right circular
cylinder and along four of the generatrixes, lying in two naturally
perpendicular planes (Fig. 3-14).
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Fig. 3-13. Conductor Fig. 3-14. Conductor
formed by wires on edges formed by the wires

of cube. arranged along the direc-

trix and four generatrixes
of a right circular cylinder.

When H/4R < 1

c, ' _ 4 (=R H) ( )
= , 8R =R H 16R ' 3-19
—_—in— 2t — K In—+1
2'"4 Vi are R(n H )

where K is a complete elliptical integral of the first kind (see

Appendix 1) with modulus g R
4R% + I

Lol

3-3. The Capacitance of Solltary Conductors, Formed
by Wires Arranged Near an Infinite Flat
Impenetrable Boundary

The formulas given 1n the present paragraph were obtalned by
the method of mirror reflection of the conductors being considered
relative to a planar impenetrable boundary. Some of the auxiliary
systems obtained in this way coincide with those considered 1in the
previous paragraph. In these cases calculation of capacitance bogils
down to utilization of the formulas of appropriate sections § 3-2.
The numerical examples given in the present paragraph concern basically
the determination of the resistance of grounds on the basis of an
analogy between conductivity and capacitance (see § V-4),

1. Rectilinear wire of finite length.
a) The wire i1s parallel to the boundary plane (Fig. 3-15):
Co

C. 'T, (3-20)
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', 1c determined from formulas (3-7)-(3-9).

Fig. 3-15. Rectilinear wire of
finite length parallel to a flat
impenetrable boundary.

b) The wire 1s perpendicular to the boundary plane (Fig. 3-16):

Co

(3-21)
2’

C. =X e
1
where C, when # = 0 is determined from formulas (3-1)-(3-3), and
when h # 0 from the formula (3-11).

2a Fig. 3-16. Rectilinear wire of
o finite length perpendicular to
a flat impenetrable boundary.

Example 3-5. To find the resistance R of horizontal and
vertical grounds with radius ¢ = 0.1 m and length Z = 1,0 m in
ground with electrical conductivity y = 2.0:10"2 1/Q+m, arranged
on depth: horizontal ground — d/2 = 1.0 m, vertical ground — 7 = 0.5m
(see Figs. 3-15 and 3-16).

Using the relation between R and C, (see § V-4), we find for a
horizontal ground [formulas (3-20) and (3-7)]

R=L .o 2

Glﬁ-ﬁ hnw{[ Vﬁ] ]
ol e/
_l/|+ }m Q,
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for a vertical ground [formulas (3-21) and (3-11)]

208-{-2!0

Ret et o [ ~25 Q.
G 1 1C zno- T20341.0

2. A wire in the form of a circular ring arrang:3d in a plane
parallel to boundary (Fig. 3-17).

FPlg. 3-17. A wire 1n the form
of a circuiay ring arranged in
a plane parallei to an impene-
trable boundary.

When h << R

1o 3R ° (3-22)
oh

When h >> R

- '__HP_ (3-23)

3. Two identical rectilinear wires perpendicular to a boundary

Fig. 3-18. Two identical
rectilinear wires perpendicular
to an impenetrable boundary.

C.a-. (3-2“)

where Cé is determined from formulas (3-7)-(3-9).
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4. Several (n) identical rectilinear wires perpendicular to a
Loundary plane.

a) Wires are located in one plane at an equal distance from one
another (Fig. 3-19):

¢
Com 3 (3-20)

t
where C, determined by formula (3-15).

Fig. 3-19. n identical wires
perpendicular to an impenetrable
boundary and arranged in one
plane at an equal distance from
one another.

b) The wires are located uniformly on the surface of a
circular cylinder (Fig. 3-20):

Cy
- (3-26)

: .
where C; 1s determined by formula (3-16).

28 oZF Fig. 3-20. n identical wires
AT ? perpendicular to an impenetrable
20|\ P ¢ " boundary and arranged along the
rt . generatrix of a circular cylinder.

I
vy
A"
»

Y

A s

c) The wires are located on the parallel edges of a parallelepiped
(Fig. 3-21):

c,-i_;, ' (3-27)
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Flg. 3-21. PFour identical wires
perpendicular to an impenetrable
boundary and arranged along the
edges of a parallelepiped.

A S25505¢
LY ZXXR X
LX) 3 OO
e A XA HOO0
OO LOOOOOOE
AKX 0000762202626 %.%,
P.0.9.0.0.9.9.0.90:097% s

where Cé 1s determined by formula (3-17) when d = 4/2 = hl‘

5. Wires connected in the form of a rectangle parallel to a
boundary (Fig. 3-22).
Fig. 3-22. A conductor in the

form of a rectangle parallel to .
an impenetrable boundary.

Co=—=0 (3-28)

where [ = 2 (Zl + 12), and the values of the coefficient k, depending

on the ratio 11/12 are given below:

Wiy 1,5 20 30 40
- 3,81 6,42 8,17 10,4

When Zl = Z2 = 1

E‘-——-—-.
I 5,831
where [ = U7,

6. Horiazontal rectangular grating parallel to a boundary

(Fig. 3-23).

Come—22L_, (3-30)
v . lll-&—h-'-l-p

Th



where L 1s the total length of all conductors that form a grating;
D 1s a coefficient depending on the ratio of the dimensions of the

grating and the number of 1its cells.

The values of the coefficlent D for some types of rectangular

lattices are given in Table 3-5.

Fig' 3-23 .

A conductor in the
form of a rectangle parallel to
an impenetrable boundary.

Table 3-5. Values of the coefficlent D
which enters formula (3=30).

'No. . |
: 1.0 | X ] 20 30 40
onder | SiEygture of i
1 T Ton]m]1,88] 210 2,34
O 4 .
h——'
- .
2 3,67 | 3,41 3,31 ] 3,2} 3,35
K i
g
Yy
3 4,95 5,16 | 5,44 6,00] 6,52
3 '7—1 ' '
Ay
___l
.t -
4 - 4,33 4,43| 4.73] 5,04 5,61
-
-o-r-ol d.lj«
l .
'3 : { |8.55]8.94] 9.4 10,30] 1,1
S :
K 1
-j.-gq.?q
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Example 3-6. To find the resistance of a horizontal ground in
the form of a rectangular grating of tubes with 4 2,0 x 1.0 m celis
with a diameter of tubes of 0.02 m. The grating is placed into

ground with ~‘ectrical conductivity of y = 10'251— to a depth of
'm
h = 2.0 m.

Using an analogy between conductivity and capacitance, let us
use for calculation the formula (3-30).

The tcotal length of the conductors of the ground being considered

18.0 m,

is L =3 (Zl + 12) = 3 (4,0 + 2.0)

The coefficient D which enters (3-30) is determined according

to an assigned ratio 11/12 = 2.0 from Table 3-6, with the ald of
which we find that D = 5.4,

Table 3-6, The values of coeffi-
cient Dy, depending on 1/d.

1. . ] Y |
rl b, ri o, r D,
0,0 0.0 0,90 0,364 0,45 | 0,578
10 00421 0,8 | 0,379 | 0,40 | 0,647
§ 0,082 {. 0,80 0,396 § 0,35 | 0,684
2,6 0,157 0,75 0,414 0,30 | 0,721
20 0,19} 07 | 0435] 0,2 | 0,790
1.5 0,283 0,65 0,457 | 0,20 | 0,874
1,1 0.310 0,60 | 0,482 0,15 | 0,99
1.00 | 0,336 ] 0.5 | o,5101 0,10 } 1,158
0,95 | 0,350} 0,50 | 0,541 | 0,05 | 1,445
Thus,
192
. In— + 544
Rl ;. . o 200020 ~ _,0g

g 1C 2¢.18,0.10™2

1. Flat n-ray etare parallel to a boundary,' when h/1l < 1
('igs. 3-24 thru 3-28),

a) 2-ray star (IF-shaped wire) (Fig. 3-24):
4xsf
L
In -";-‘- + ln%—0.2373+ 0,2146 -‘:’-,+’-‘-lws%-°-°‘9‘— (3-31)

C. o~

o

!n-ray star will ie the name given the conductor formed by »n
rectilinear wires intersecting at one point.
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[13] < 1,0% vhen A/l <0,8],

e g |
XXX

Fig. 3-24. A [-shaped
wire, parallel to an
impenetrable boundary.

. AN ..’.‘;_O.O’VQO;Q. R
L)

R RRIRRRK
AAOLDESS
rersasase ot tetete %% Yet g

Fig. 3-26. Four-ray star
parallel to impenetrable
boundary.

Fig. 3-25. A three-ray
star, parallel to an
impenetrable boundary.

Fig. 3-27.

boundary.

()

Fig. 3-28.

* v oY
6102626065 %% %%
(0 RIIRRND

LA
* 0.0‘0.0.0 QOOY

ST
020%10%0% %

0.:.0.

Eight-ray star

parallel to impenetrable

boundary .

17

Six-ray star
parallel to impenetrable
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Furthermore, a less accurate formula can be used

rel
c.a e )
n l.“l.'. .

ahk
where L=2, lal < 10% when 7 < 0,8.

b) 3-ray star (Fig. 3-25):

C. —~ 6=ed

] 2% N ™) &S
|1 __.T.| o= |'07|_.0.209__ o.m___.o.m_.
tE TR T 1 T .

1131 < 1,0% vien A/2 < 0,8]

or
el
C.z.‘_""'—‘
|n2___.381.l ' .
. ah
where L=3, ]3| <10% when Al <08 .
c) 4-ray star (Fig. 3-26):
- Swsl

Co=—5 ] A » »
10— 4 Ip — 4 2,912— 1,071 — 4 0,645 — — 0,145 —
pg et N T iy

18] < 1,0% vien Hll < O8]

or
2l
Com—sin * -
ok
where L =41, |8] < 10% when Al <08
d) 6-ray star (Fig. 3-27):
C 12:d
-] 2 A At At
ln-.-+lnT+6.85I—3.I2lT+I.m-‘-;——o.ﬂo-;-

113] < 1,0% vhen A/l < 0.8)
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pr—en:

or

2xel
Coeae T (3-38)
a-hk
where L = 6l, |8] < 10% when kil <08
e) 8-ray star (Fig. 3-28):
16xe!

2 A ] At ad

(18] < 1,0% when Al < 0,8},

3-4. Capacitor Capacitance of Systems of Wires

In the present paragraph formulas are glven for the calculation
of capacitance between two conductors, each of which is formed elther
by a single wire, or by the combination of several wires.!

1. 7Two parallel wires of eircular section (Fig. 3-29)

a) b= 0:

Coy———0
BT (3-40)

wgzferd+ -1/ )
g+ -y 1+ @)

Flg. 3-29. A system of two
rectilinear wires (general
case),

where

1The basis of the majority of the data of the present and
following paragraphs 1s the results of work [3-1].
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b) b“o.'xr—""gl.a‘,a’-a:

=..___.f L b L L b—1
TR Arsh -~ : + Y Arsh -~ ( i I)Arsh——‘—H-

Com—— ™ ——, (3-41)
2. - 2.3000,

where coefficient D, is determined by expressions:
%—[I/H(-%)’—'] l/|+(—)
D.a R

at 1/d < 1 - w,__h/:(_)_,] i) m;

at 1/d > 1

-l'-lg

+4¢

The values of the coefficient D, depending on Table 3-6.

At € = eo

C(DF ) - - bt )

n 5= 2,2 0, (3-41a)

c) a; =a, =a, b= Zl + 2m (Fig. 3~30):

oyt ey — 22y

apn 2_,.{1::["+1/l+(4)]+ l/”( }
~ .:,{ ['-41/|+ " ]+——[/'+ }

: Mth+ VTt +hp
=g, n.+m+Vd'+(h.+mr

where

-I-h In h|+ha+Vd'+ (M 4 Ay
mtmt VBt byt mp
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(om+ Vaiam)

+min — — e A
s+ V@ s e b+ Ve v ]
+V @+ +mp 4 | b by + m)—
—Va+t+hp- E4am},
d) d=0 ly=ly=l ayma,=a, b=1+2n (Fig. 3-31)
Cx l el . (3--43)
In — ~ 2,030,
alaﬂw Fig. 3-30. Two parallel wire
: at b = 1. + 2m.
. ' v , 1
- L]
2m Iy
ﬁ.- L3 ! ~ .~

where coefficient D2 depends upon the ratio m/l and 1s determined by

formulas:
at m/l L1 .
ou- 0n + () (4 {1+ )=
—(1+ )1+ T):
at mit>1 ' e -

D, =013 + Hrr=)e(r+ {u—)fl"'Q('l +30) lg‘(l +30):

' Fig. 3-31. Two identical wires

- 2 i arranged on one straight line.
fo— 3 -, . 3 Py
«t’:ﬁ# — =

* 'he values of couefficlent 02 are glven in Table 3-7.
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Table 3-7. Values of coefficient
Dy depending on m/1.

ool
»

[ LJ

T o, | T o,

0,02 | 0,43 ] 03 {0,280 | 1.0 |02

0.04 | 0:384] 0,40 {0261 | 1.11 | 0208

0,08 0,369 0,50 | 0,247 1,25 ] 0,198
- 0,08 | 0381 o060 | 0,28 | 20 | 0,17

0.0 | o.M5 | o070 | 027 | 28 | 0170

0.15 | 0,33] o080 | 0219 | 5.0 | 0,153

0.20 | 0,35 | 0,90 | 0,212 | 10,0 | 0;is4

0.25 | 0,21 .

When € = ¢

C(pr) = — M .
in -'— — 2.3)3 “

(3-43a)

e) b =0, ly=1ly,=1> d'(a plane-parallel system, Fig. 3-32).

Flg. 3-32. Two parallel
infinitely long wires of
different diameter.

Capacitance per unit of length of system 1s determined by
formulas: at random aq and d

2xs - -
cl- m"—‘:—‘; H (3 ‘“‘)
28,
at a.na.-a c
b= 4’ (3-45)
Ardl?‘—

at q,=a,=a, dda

ws (3-46)

Example 3-7. To determine capacitance per unit of length of
a two-wire located in air and consisting of wires 2 a = 4 mm in
dliameter and 4 = 10 c¢cm apart.
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Since in this case d/a = 50 >> 1, 1t is possible to use formula

(3-46), with the aid of which we find (when ¢ = eo)
C'B L- =.la—. -7.I.IO'"F/m =71 pF/n.
gl =B -
a

2. Two infinitely long wires of rectangular section.

Capacitance per unit of length of system is determined by the
formulas:

a) 11 general (Fig. 3-33)

Cree T (3-47)
, ,n[fw“‘(h—l-'-t(v-—l))]
[I3[< 2.0% wheny> 10,

or

G s (3-48)

113} < 5,0% whenvy> 7],
where S

a; 0.41'—.;.“7.3‘; ';l i
-l o.4?;—|.m,-l ’
£ 2 s .

o (0.1} +0,em, +035)"

11":"5'- 'h"'b‘.

[ 5 i

b) in the case of a symmetric system (Fig. 3-34) a; = bl =a, =

=b2=a;

where '-1.695% and
13]<3,0% when v>7, d>4a,
or

Cro — (3-50)

(13] <4,0% vhen
+> 10, d> 6a).
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Fig. 3-33. Two infinitely long
. rect. linear parallel wires of
7 rectangular section.

Fig. 3-34. Two identical in-
finitely long rectilinear
parallel wires of square section.

Example 3-8. To find capacitance per unit of length of a
two-wire line formed by wires of square section with side a = 1 cm,
arranged in air at a distance of d = 5 cm from one another.

At the assigned dimensions of a line parameter v, entering
formula (3-49), v-l.sss-;--.a.«;

Then, using formula (3-49), we find that when ¢ = €g
2: 10~

3= In [a.«’- %4:—.%]

C = - 13,25.1072 ¥/n = 13,% pF/n.

If we make use of the simplified formula (3-50), then

.10~

Cre %= (1,72.5)

"= 129:10°" P/na= 129 P¥/m,

l.c., the relative difference in the resulilts of calculations from
the formulas (3-49) and (3-50) for the given value of v is 3.6%.

3. Two intersecting or crossing rectilinear wires of finite
length:

a) the general case (Fig. 3-35):
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| I
C o i (3-51)

e e AR

e a
M=y "l/‘ 2 (x-'—x.)'}'

where

-l /T

+

o a o« et ﬂ
”'_”"—:_l l+ (hf‘h)’}.
_m%@+m—ﬁ'
(- la—p
F,, = x,Inly,—x,c08 ¢ +'D“]-'i-y,lnlx;—-y,cosq-l—D,,]+

+ anﬂz(fiillilklllil)-
sing 4l 2/

LT

b= VET AT F
-P=l.2;. q-lo 2;

b) perpendicular wires of equal length are located in one plane;
dﬂmv-%ﬂ Xy o=y, = b h_n-%_yl-l(M& 3-36):

N n..[%J, I/TE(__:':)T]Jr ::;1/1—_—(‘%7:_” J (3-52)

I A1+ Vis+atip

A 241(h +
1 —|-7==£=s
+(+l)nh+ B+G+p

PAR, AR Fig. 3-35. Two intersecting wires
1l and 2. Pl and P2 are parallel

planes passing through wires 1 and
2, respectively; P3 is a plane

perpendicular to P1 and P2. d 1s
the distance between planes Pl and
P25 ¢ 18 the angle between wire 2

and the projection cf wire 1 on
plane P, (or between wire 1 and

the projection of wire 2 on plane
Pl). @, ©y and y,, y, are the

coordinates of the ends of wires
reckoned along the line of their
location from points 0l and 02,

respectively.
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- 2 . Fig. 3-36. Two straight wires
“%ffffszie of finite length arranged at
F 2R B right angles.

20 "

When -%-))l; —;—»l a simpler formula can also be used

Con S

L (3-53)

4, Two identical wiree in the form of a eircular ring arranged
symmetrically in parallel planes (Fig. 3-37).

Fig. 3-37. Two identical cir-
cular rings lying in parallel

planes.
4R
C~ - ’ .54
L& __R = (3-54)

where K 1s the complete elliptic integral of kind I with modulus
2 R
RS == Rie (see Appendix 1).

Example 3-9. To determine the capacitance between the conductors
shown in Fig. 3-37, considering that they are located in alxr, the
radius of every ring is equal to 5 cm, the distance betwe=n them 1s
10 cm, and the diameter of the wire 1is 0.1 om,

Calculating the modulus of an elliptic integral, we find that

Re 25
[ P - - ,o,.
l/ RS+ 18 %42 .

Then from the tables of elliptic integrals we find that K = 1,854,
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Substituting this value into formula (3-54), we find that the
capacitance between the conductors considered when € = €9 is

4:3.10-2.5.10~2

36u(ln ::s -o.m.l,au)

C =

-1,04-10-" P = 1,04 DP.

5. An “afinitely long etraight wire and the coaxial eirocular
ring enveloping it (Fig. 3-38).

Fig. 3-38. A circular ring and
rectlilinear wire coaxial with it.

¢ (3-55)

6. 4 etraight wire of finite length passing through eircular
cut of the plane (Fig. 3-39).

Fig. 3-39. A straight wire of
finite length passing through
a circular cut in conducting
plane.
When a << R and 2R = |
c 2ed -56
= [j i o (3-56)
a(2R +1) .
when 2R << 1
C o S8 i (3-57)
2R
&y
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Example 3-10. To dztermine the capacltance between a wire
2 mm in diameter and 40 nm long and the metal panel of a voltmeter,
ir the wire passes through an opening in the panel 10 mm in diameter.
Disregard the influence of insulation.

Using formula (3-56), when ¢ = €y We find

2x.10—%.40.10~°
3%z.In ———

C= = 1,051 P 1,086 DF.

From a less accurate formula (3-57) we have

2:.10~%.40.103
2.8

36-.-ln—‘—-

Comparison of these results chows when 1/2R = 4 formula (3-57)

C= « 095 PF.

gives significant error (=10%).

When 7/2R > 10 the difference in quantities calculated from
formulas (3-56) and (3-57) does not exceed 6.5%, when 1/2R > 20-0.7%.

7. 2 n identical wires in two parallel planes, in each of which
the wires are interconnected (Fig. 3-40).

\ Fig. 3-40. 2 n wires arranged
> in two parallel planes.
v Y
. . .
/;22&{;22&4§£2u5‘jlffé?
) o 1 & : & |

When (n - 1) b < 1

C - e nrsl

In-%—+(u—l)ln-%—-2.308n(b,+ By (3-58)

where 0. 1is fouad from Table 3-6, and coefricient Bn is determined

1
by the formula

B,= S lig(n—1) +2ig X

X(r—2+3g@r—3P+ ...
oo +(n—2)1g2).
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The values of coefficient Bn are given in Table 3-8.

Table 3-8. Values of the coefficient
B entering formuls (3-58), depending

on the number of wires.

[ ] 8. [ B. ] ] D. '] a,
2 |o,0 8 |o37] 14 |os50] 2/ o688
3 {oos7] 9 |o3s] 15 |o05s%]| 30| o8
4 |o13s] 10 {o4s] 16 | o601 ] | oo
5 Lot} 11 |o4o] 17 |oes| so| 1.063
6 |o2s2] 12 | o4 ] 18 |06 | 100] ti37
7 |032] 13 ]052] 19| 0668

When ¢ = eo
- 7.8n
ClpP)= : : 5
lq%—+(u—|)ln%_2.m(on+ﬂu)ﬂ (3-58a)

8. 2 n identical rectilinear wires of finite length arranged
in one plane and connected in accordance with Fig. 3-41.

2a Fig. 3-41. 2 n identical recti-

linear wires of finite length
arranged in one plane.

i

When (n-1) d <m

o= iy - (3-59)
In -+ (0= 1) In - — 23030 Dy 4 B)

where D, 1s determined from Table 3-7, and B from Table 3-8.

When ¢ = €9

C{pF) ax r Hﬂ&‘?
Ino i (a1 ln.-‘-—-n(Dn i.84g

. (3-59a)
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9. Conductors formed by the union of infinitely long parallel

wires.

a) Three wires in one plane, the extreme of which are united
(Fig' 3‘“2)’

E.—Z'(Z)'"] | (3-60)

Fig. 3-42. Three infinitely long
wires lying in one plane.

o
v d

b) 2 n wires of alternating polarity lying in one plane
(Fig' 3‘“3)0

ln—.‘ (3-61)

¢) 2 n wires of alternating polarity arranged evenly on the
surface of a circular cylinder (Fig. 3-44),

2R "
‘2¢
4
)/ Yd
2
Fig. 3-43. 2 n loaded Fig. 3-44. =n charged wires
wires of alternating of alternating polarity
polarlty lylng in one lying on the surface of cir-
plane. cular cylinder.
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When 0.4 < a < 0.65 and a<< 2R

whers as== —252-.
R .

Cowe ————2 e -
= 2in(x + Va¥—1) ) (3-62)
0,68 .1 1,57a
where ®:= 1168
When a < 0.4
Coe 2t ..,
2R Qe
2'"‘;;;’ (J 63)
10. Varioue combinations of infinitely long wires and plates
(planes).

sne formulas for determining the capacitance of the systems are

given in Table 3-9.

11. 4n infinitely long

Fig. 3-45.
in a sector.

When B < m (Fig. 3-U5a)

wire and two butting planes (Fig. 3-U5).

c)

An infinitely long wire

(3-64)

| '"[.'25‘ ]/ [Lﬂ'—-(—lﬁ].+(_‘_)'} | s
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Table 3-9,

Formula for determining capacitance between an infinitely
long wire and a plate or plane.

in

&~ .
3 Name of system Caiculated model Calculation formula Note
28
1 Linear wire ‘ ﬂ,?ﬁ Ciox i = when a¢ R
over half- ’ sln-L v
plane . 2&, i 8l
: - il
R
s
lin'l-
: 2
where N = . -],
| =V -5 ]
«
,I Croe —22¢ 3 when s ¢ R,
, 4R sin - ﬂRlinII‘.‘f)‘
' [ ]
!l lﬂ. q
2| Linea» wire Ci= She he
y [ when g ¢ d,
over a plate In { el Gl -col'q] ;
da alh
uhere' ) .
.‘ .
G uclcT
: e
3| Linear wire G . when 6< 4,
over plane o 2(d* 4+ AY) sint .]
with cut da oA

where

d
: [ B .l'et‘ T
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Table 3=-9 continued.

-]
i 0 0
8 Name of systeJ Calculated model Calowlation formula Note
A A ]
4| Linear wire C o 2xed ) r———
over plane ' d : FEQ J .
with ocut T I / dﬂ—-dln[—.—-;- 1/. (T)._l
Ine
C‘ A eo—— \fhen ag d
e
3 Linear wire . . C s
between two y ‘.m _Q_L_.'n_uﬂ_ , wesagh
planes, Q =a b )
G~ 2n ~ when 2. < 0,8
A= d2
6| System of Ci== ] ,
linear wire -Q- : ¢9{ ? b A W .'3‘.
_ between two |. 2d~ - .n -;;'%(T; _b-)'
plenes where
8 — $heta-function .
: a — the nuber of wires for which
capacitance is determined .
C = Sund . when A w -
b=t m._".‘;.m(-.'g. . 2
® 80T T\Nu )
y gen
7| System of Cias — , whena € rq
linear wire In 2r T ) '
and semi- \ ¢
infinite
.plates evenly
arranged
along the
radis
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When B = n/2; ¢ = n/4 (Fig. 3-U5¢)

~ 2
== 5, _ X

In (1:41 %-) (3-66)

Example 3-11. To determlne capacltance per unit of length
between a linear wire and a plane, in the cut of which i1t 1s located.

The diameter of the wire is 2 a = 2 mm, and the width of the cut 1s
2 d = 10 mm.

The sought capacltance 1s determined frocm the formulas of
paragraph U4 of Table 3-9,

From the first formula when € = €, we obtain

s 2:.5.10~° = 2,7.10-" r/n=247 PF/m

%) B-1n[s+VB-1)

From the second

2:-!0'; = 24,2.10-2 F/n = 242 PF/m.

C,'—‘s

As 1t appears, even when a/d = 0.2 the difference in determining
capacitance from the glven formulas does not exceed 2.5%.

12. An infinitely long wire in the center of a shell of square
section (Fig. 3-U6).

] Fig. 3-46. An infinitely long
i wire inside a shell of square
5 section.
28"
2¢
Cpoxe —2 .
‘ 1082 (3-67)
v a

lkxample 3-12. In the center of a copper tube of square section
with side ¢ = 20 mm, there is a linear conductor 2 mm in radius.

9lU
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To determine the mutual inductance of a wire and tube af high
frequency (per unit of length).

Using formulas § V-4, we find that

L= %

]

The ceraclitance of the system considered is determined by
formula (3-67), therefore,

[ARM

4z. lO'"

L= —gln[ 085 ] [1.08 —:’—] - 4710~ H/m

13. Syetem of touching infinitely lony wiree arranged on a

eircunference, and the shell of eircular section eveloping it

(Fig. 3-47).

Fig. 3-47. System of touching
infinitely long wires arranged
along the circumference inside
a shell of circular section.

2R ' (3-68)

14, System of touching infinitely long wiree arranged on a
cireumference, and circular ehell inside it (Fig. 3-u48).

Fig. 3-U48. System of touching
infinitely long wires arranged
along the circsumference outside
a shell of circular section.
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3-5. Capacitance Between Systems of Wires
and Infinite Conducting FPlane’

The formulas given in thils paragraph were obtained by the method

of mirror reflection of conductors considered relative to a flat
conducting boundary. Some of the auxiliary systems thus obtained

e us,
coincide with those considered in the preceding paragraph. In these

cases the calculation of capacitance between conductors and conducting

plane bolls down to the use of formulas of appropriate sections
§ 3-4. The numerical illustrations given in this paragraph mainly
concern determination of the capacitance of antennas in air
 m = .10~ F/m.
(u Ll 10

1. Rectilinear wires parallel to a boundary plane and each
other.

a) A wire of finite length (Fig. 3-49):
c=2C, - L (3-70)
where 2' is determined from formulas (3-41) and (3-41a) when d = 2h.

t o Fig. 3-49. A striaght wire of
: finite length parallel to a
conducting plane.

2a

ol &3 T Y Y

lixample 3-13. To determin2 the capacitance between grounds and
a horizontal wire 3C m long and 6 mm in diameter arranged parallel
to the surface of the earth at an altitude of 15 m.

In this case the quantity'%f= =-§}=fﬂ' At this value of d/1
the quantity Dy in Table 3-6 is equal to 0.336.

ﬁ.
!
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With the aid of formulas (3-70) and (3-4la) we find

c o ”."'m

= 198 pF.

2
I 005 —2-303:0,336

b) An infinitely long wire (Fig. 3-50):

€, = 2C), (3-71)

1

where C, 1s determined from formulas (~-U45) and (3-46) when d = 2h.

Fig. 3-50. An infinitely long
straight wire of circular section
parallel to a conducting plane.

c) Infinitely long wire of square section (Fig. 3-51):
€, ~12Ci, (3-72)
L]
where ¢, is determined from formulas (3-49), (3-50) when d = 2a.

e Fig. 3-51. An infinitely long
. : straight wire of square cross
section parallel to a conducting

plane,

d) n identical parallel wires of finite length lying in a plane
parallel to the boundary plane (Fig. 3-52):

C-2C', (3'73)

1]
where ¢ 1s determined from formulas (3-58) and (3-58a) when d = 2h.
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Fig. 3-5Z2. n infinitely long
rectilinear wires lying in a
plane parallel to the boundary
plare.

Example 3-14. To determine the capacitance to the ground of
a horizontal antenna placed at an altitude of # = 15 m and consisting

of 6 parallel wires 7 = 30 m long and 6 mm ia diameter if the
distance between the wires is b = 0.6 m.

In the case considered %—-%ﬁ-l- At thils value of d/1 the

coefficient in Table 3-6 1is Dl = 0,336. The coefficient Bn in

Table 3-8 when n = 6 is equal to 0.252. Therefore, using formulas
(3-73) and (3-58a), we find that

- T 27,84.20-6 :
|n'_2;‘i+s|a;3"__zaoa(oaas+ozsm-c-m pE
oma 06 » » 4 (d

e) n identical wires of finite length parallel to the boundary
plane (Fig. 3-53).

Fig. 3-53. n identical recti-
linear wires of finite length
parallel to a boundary plane.

<

eTareTaTeTSTAY

If the distance between any wires d (r=1,2, .. ., n = 1) 1s

slgnificantly shorter than thelr mean distance from a boundary
(dr << h), then

zm.’.’ . . (3"7’4)

wnere

98

b b a9 A




ren=t =
Fi=Rk3+ z(lz%‘ + 043 ) =D,
 Ad

and Dy is determined from Table 3-6 when d = 2h.

-f . When € = ¢,
{ Lo rones
: 2 16n
Gitrlse s (3-75)
When the wires are located on the surface of a circular cylinder
(Fig- 3‘5“):

d, == 2R'sine -:—(t-:— 1,2 cc0, 8—1),

where n is the number of wires,.

Fig. 3-54. n identical wires
parallel to a boundary plane
and arranged on the surface of
a circular cylinder.

e P

Example 3-15. To determine the capacitance between grounds and
a horizontal antenna consisting of 6 wires 30 m long and 6 mm in
diameter arranged over the surface of circular cylinder 2 R = 1.5 m

in diameter, the axis of which is 15 m from the surface of the
carth.

'ne distance between the wires which enter a system are equal
to '

&y =d,= 07 m.d.-d‘-.liz_g-k-l.m m;d'm!.s m.
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4 _ 28
; in Table 3 6 when P %=~ is equal

to 0.336, and nDy = 6+0.336 = 2.016. The coefficient which enters
formula {3-75) 1is Fi = 4.0 + 2 (1.602 + 0.011) + 2 (1.364 + 0.018) +
+ (1.301 + 0.02%) — 2.016 = 0.297.

The coefficlent D

Using formula (3-75), we find that

24,16.30.6 - .
C - ] —’:-é"]_——. - 472 (pF) .

2. Rectilinear wires of infinte length perpendicular to

boundary piane.
a) One wire (Flg. 3-55):
C=2C, (3-76)

1]
where ¢ 1is determined from formulas (3-43) and (3-43a) when m = h.

o Fig. 3-55. Straight wire of
finite length perpendicular to
a plane.
%
£
N

Example 3-16. To determine the capacitance to the ground of
a vertical 7 = 12 m long and 6 mm in diameter, the lower end of
which 1s at a distance of 3 m from the surface of the earth.

In this case m/1 = 0.25, therefore, the value of D, in Table 3-7
is equal to 0.291. Using then formulas (3-76) and (3-43a), we find

2 W8812 e
8,28 —2,303.0,291 pF.

b) n identical wires lying'in one plane (Fig. 3-56):

C=20C, (3-77)
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?
where ¢ 1s determined from formulas (3-59), (3~59a) whern. m = h.

- Flg. 3-56. = identical wires
T - r perpendicular to a boundary and
. lying in one plane.

A
L

Example 3-17. To determine the capacitance between grounds
and vertical antenna formed by 6 rectilinear wires 7 = 12 m and
6 mm in diameter, if the distance between nelghboring wires is
d = 0.6 m, and the distance of the lower end of each wire up to
the ground 1s 4 = 3.0 m.

Using Tables 3-7 and 3-8, we find that at assigned dimensions
and number of wires of the system 92 = 0,291, but Bn = 0.252.

Using then formulas (3-77) and (3-59a), we find that

da 2.27,84:12-8 -2 oF
8,28 + 5:2,995 — 2,303 (0,291 -+ 0,257) .

¢) n i1dentical wires arranged on the surface of a circular
cylinder (Fig. 3-57):

Cagaal. (3-78)
2T 2,309F, °.
where
R T 4
Fy=lg 4+ Z(lg-z+o.434-"- —nD,
4 =Wainr o (r= 1 2. ..o,

and 02 is found from Table 3-7,.
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F Filg. 3-57. n 1identical wires
perpendicular to the boundary
and arranged over the surface
of a circular cylinder.

-« \1ﬂ‘
VAL S

When €

€

 ou16mt
C(pF) = S

[ (3-782)

3. 4 wire .n the form vf a circular ring parallel to a boundary

(Fig. 3-58):

C=2C, (3-79)

where (' determined from formula (3-5U4).

Fig. 3-58. A circular ring
lying in a plane parallel to
' the flat surface of a con-

ducting medium.

TariETmRTaTavTey

4, Tr-shaped wires lying in planes perpendicular to a boundary.

a) One wire (Fig. 3-59):

i 2xa (I + 1) .
T b _[1n2048) _ga03p h_ finh _2303p -
] i mai ] e G )+ (3-80)
-|- 2,303D,

wnere coefflclent D, 1s determined from Table 3-6 at d = 2(h + Zl),
i = 12; coefficient D, from Table 3-7 at m = h, 1l = Zl, and

coefficlent D3 from Table 3-10.
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The values of the coefflclent

03 which enters formula (3-80), when L/l < 1.

Table 3-10.
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To determine the capacity between grounds and

Example 3-18.
an antenna conslsting of a horlzontal wilre 12 = 30 m long and

ekt AN

2a = 6 mm 1n diameter arranged at an altitude of Ly +h=15m, and

of a vertical overhang of the same diameter Zl = 12 m.

SROVRPP NP
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Using formula (3-80a), we compute the quantities preliminarily
entering 1t. At the assigned parameters of a system

a=0003%; k=3n; lgw':" -

h 12
g =18 ooy ~ 3%

Concerning ‘:—- 2(":"" Y —=1 from Table 3-6 we find that D, = 0.336;
concerning %-7"1---'—32--025 from Table 3-7 we find that D, = 0.291;
according to known relationships -:f:-—%=°-4 and 7’:—-%—:—-05 from
Table 3-10 we find that Dy = 0.194,

Thus, we obtaln that

24,16(0 4+ 19) SR - J—- DF.

~ 0,714 (1,0 — 0.336) + 0,286 (3,602 — 0,291) + 0,19 . 3,769

Let us note that during the determination of capacitance of the
antenna being consldered by the addition of the capacitances of
horizontal and vertical wires (see examples 3-13 and 3-16) 1ts value
proves to be equal to 283 pF, i.e., 4.5% more than that calculated
using formula (3-80a), considering the mutual effect of the wires.

b) n parallel wires (Fig. 3-60).

- Fig. 3-60. T[-shaped wires
lying in parallel planes
perpendicular to a boundary.

C=2tthi by

2303’ (3-81)
Ve e 5 :1—'— 2‘."'” ! h _
et Lo I.H.('g ) D)+,;,( O D’)+
ttamnlte_frof0+n)
- (n l)[ ] (lg 4 .D.)+

rekaleg-o)])+on
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r—n-v:--m-

and coefficient Dl, 02 and D3 are determined just as in the case of
a single l-shaped wire, and coefficient B  is found from Table 3-8.

Ate=€0

06 (8 + 1
C-’=—'24 (hrl)

7 pF.

(3-81a)

Example 3-19. To determine capacitance between grounds and by
an antenna formed by palrwlse connection of each of the horizontal
and vertical wires considered in examples 3-14 and 3-17.

L 12 &

In thls case T=—5--x0.4 and —E--- 005 and from Table 3-10 we
find, that Dy = 0.194. Then, using data obtained in examples 3-14
and 3-17, we find that

H K 12 .
- 4,0 — 0,33 3,602 —0,291) +
L s{ao+|2‘. )+ e G202

" 2 12 '
695 — 0,33 1,31 -0.291)]}—-
+s[30+|2 (1,695 YT

- 0,252 4- 0,194 = 1,588,

Substituting the obtalned values into formula (3-8la), we have

C o 2016(30+ 12

1,588 =63 pF.

If it is simple to summarize the capacltances obtained in
examples 3-14 and 3-17, then ¢ = T44 pF, which is 15.7% more than
the quantity calculated using formula (3-82a), taking into account
the mutual effect of horizontal and vertical wires.

5. T-shaped wirees lying in the planes perpendicular to the
boundary.

4) Une wire (Fig. 3-61)

2na (1 +- 2,
C=—r 20+ 1) = .)1 i ' (3-82)
i [In 4 _-2.3030,]+'—f§-; (ln _;--Q.mo.)-w
¢ | R |
2(h 4+ I)
N =2m2 0,

105




arranged in the plane perpen-
1 dicular to a boundary.
o “jf?
YRV EYRYEYRY

where the ccefficient D; is determined from Table 3-6 when d = 2(h+ll);
L = 1,; coefficient D, from Table 3-7 whenm = h; 1 = l,, and

coefficients D3 from Table 3-10.

When ¢ = eo
o 24,16 (! ‘1"";1
C = 3 F

2y [, 2t 1) A P > PP (3-82a)

e b il e ) A
2L+

N=ZHiT

"rfﬁnéb

Example 3-20. To determine the capacitance between grounds
and by a T-shaped antenna 1if 1ts horizontal and vertical wires have

the same sizes as in examples 3-13 and 3-16.

In this case 2/, =30 m{, = 120 A==3 m,q= 0,003

21, 2 A 12 A, 4+ 2 54
= =207 Lt " = 0286 2Tl o,
At such values TN r Y r 25, G 285;

D, = 0,3%; Dy = 0,291.

From Table 3-10 we further find that whe:u T"-:.o.zs and -:!-ao.a D, = 0,263,
1 s

Substituting the obtained quantities in formula (3-82a), we
find

c..’i-l‘!é%*ﬁ-m pF.
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Using this value, it can be established that simple addition
sf the capacitance of wires making up an antenna gives error of the

order of 8%, and the relative difference in the values of the

capacitance of T- and -shaped antennas at the same length of hori-

zontal and vertical wires is about 3.5% (compare example 3-18).

b) n parallel wires (Fig. 3-62)

Cou =R, (3-83)
where
B
o= (e - o) e (e~

20 + Iy
B o+ ,_+m..U&

and coefficients Dl’ 02 and D are determined just as in the case
of a single T-shaped wire, and coefficient B is found from Table 3-8.

Fig. 3-62. Several T-shaped

2"__ wires lying in parallel

planes perpendicular to a
boundary.

-« : / .

rReTeTeTRTSTRTRYaT

When € = €
24,16 {1
Cx2B0ER. op, (3-83a)

6. A V-shaped wire parallel to a boundary (Fig. 3-63).

ittty
’ (3-84)
'l+‘.(lnf;--2.3030.) '1+h(h—-zm.)+ﬁ
N=203(7,~Yy
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where coefficlent D, is determined from Table 3-6 at L = 1., d= 2h ;

?
coefficient D; also from Table 3-6, but at 1 = Ly, d = 2h; aud
coefficients Yl and Y from Table 3-11 and 3-12 respectively from

2
the value of the angle 6 and the relationships 2h/zl and 22/11.

Fig. 3-63. A V-shaped wire
lying in a plane parallel to
a boundary.

-

A (YEALALE L)

When €

€

24,16 (1, + Is)

g2 D)+ (g A D) ev, -y, (3-84a)
( o ) ht+h\" %

N
L+th

Example 3-21. To determine the capacltance between grounds
and horizontal V-shaped antenna, at an altitude of A = 15 m and formed
by wires 2¢ = 6 mm in diameter and Zl = 30 m and 12 = 15 m long
intersecting at an angle of 6 = U5°,

In this case -%"-r. loooo;,l..ga T”‘..-z, and from Table 3-6 we find

] ]
that Dy= 0023, and D,= 054l

h
Y, = 0.497, and from Table 3-12 we find that Y, = 0.131. Then

2
Y = Y, =¥, = 0.366.

From Table 3-11 we obtain that at & = 45° and'lL--%- coefficients

From formula (3-84a) the capacitance sought is

Cu HBE@LI gy pp,

3-6. Capacitance in a System of Many Wires

In the present paragraph formulas are given for the calculation
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Values of the coefficient ¥, entering formula (3-84).

.09 (7 or 0.8 05 04 03 0.2 o
,3004 [0,2983 | 0,2942 | 0,2873 | 0,2764 0,2598 | 0,2346 | 0,1957 | 0,1323
. 93 ' - ‘989 2781 13 2359 1967 1329
3080 3056 3016 2044 2832 2660 2400 1999 1318
3179 3156 3112 3037 2920, 2741 |- 2469 1380
3326 3303 3176 3051 2860 2573 2134 1427
3534 3457 3370 3234 2028 2714 2244 1492
90 3828 3820 3780 3732 3483 3254 201 ] 2393 1578
85 3045 393 3905 3844 | . 3743 3584 3346 2089 2453 1612
80 4075 4066 4033 3970 3863 3697 3448 3076 2518 1650
75 4220 41 4176 4109 997 3823 3560 3172 2591 1601
70 4383 4372 4265 4146 3962 3686 3277 2670 173
65 v 4565 4554 4515 4440 4313 4118 3825 3195 2759 1786
60 4771 4759 4718 4501 4292 398 35% 3857 1842
85 . 5004 4992 4946 4859 4713 4489 4156 3678 2966 | 1903
50 5271 5257 5208 5112 4954 4712 4354 3838 3089 1971
45 5579 5563 5500 5404 5230 4966 4580 4025 2027 2048
40 5037 5920 5859 5742 £550 5260 4839 4239 3354 2136
3 6360 6340 6272 6140 5925 5603 5139 4486 3566 2236
30 6870 6846 6767 6616 6371 6009 5494 4778 3780 2354
2. 7498 7470 7376 7198 6915 6502 5023 5128 4035 2194
20 8299 8264 8148 7833 7598 7118 6457 5563 4351 2668
15 9376 9330 9180 809 .| 8499 7926 7155 6129 4762 2892
10 10060 | 10892 10681 10318 9793 9082 8149 6934 5345 3210
5 13769 | 13663 13314 | - 12171 12034 11079 8320 6346 3757

of the partial capacitances of typical systems of the many infinitely
long rectilinear wires arranged either in an infinite space oOr near

an infinite flat conducting boundary.

Whole systems considered below are considered electroneutral

(see § V-1), in connection with which only mutual partial capacitances

are determined for them.

In this paragraph formul:: are given for the capacitance between

two wires in the presence of other uncharged conductors.
l. A three-wire line in infinite space (Fig. 3-64).

Fig. 3-64. A symmetric three-
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Table 3-12, The values of the coefficient Y

2)
which enters formula (3-84).

03 1,0 20 80 Note
0,359 | 0,203 | 0,106 [ 0,043
3 349 1
‘ 328 197 106 013
304 191 1045 043
282 185 103 043
2%4 178 102 043 L.
29 172 101 043 2l
237 167 ‘099 .| o@3 b,
228 163 098 042
221 160 097 0425
216 Is8 097 0425
213 156 0% 0425
212 156 0% 0425
‘ 0 os71 | 032 | 0,175 | 0,001 | 0,037
15 5! 174 1
30 161 292 17 01 037
45 406 274 167 091 037
60 364 257 162 090 037
75 I %2 | . 158 089 037 -
90 307 230 154 088 037 -1 =0,75
105 288 220 150 087 67 | b -
120 274 212 147 086 037
135 264 206 144 088 037
150 257 202 142 085 037 R
165 253 199 141 085 037
180 251 198 141 085 037
0 0,432 | 0,29 | 0,i35 | 0,0n | 0,02
15 414 26 135 o7 029 .
30 379 | 29 133 o7 029
45 33 221 131 0705 025
60 313 210 129 . 970 029
75 289 200 1% 0695 029 [
90 . 270 192 124 069 029 L =05
105 255 186 121 069 029 L
120 24 130 1195 068 029
135 235 175 118 068 0285
150 20 172 nz7 0675 0285
165 225 171 116 067 0285
180 223 170 116 067 _028%
0 028 | 0,136 | 0,0 | 0,042 | 0,07 Iy :
i5 ] 136 079 042 017 ~—L = 0,25
30 22 134 079 042 017 s
43 0,215 | 0,131 { vu,78 0,042 | 0,017
60 204 | 128 775 017
% 194 126 e d 042 o7
0 185 122 076 042 017
105 178 120 075 042 07 | h _oos
120 172 17 | < o 042 017 e
135. 167 i 074 041 017 )
150 164 114 073 041 017
A
180 1
0| 0,009 X 0,035 | 0,019 | 0,008
15 099 059 035 019 008
30 097 059 036 019 008 .
45 096 058 ¢35 019 008
60 092 068 035 019 008
75 092 057 035 019 008 L
90 020 057 035 019 008 =0,1
105 088 056 035 019 008 4
120 086 056 034 019 008 :
135 085 055 o4 019 008
150 084 055 034 019 008 . e
165 084 055 034 019 008
180 0835 055 034 019 008

[
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Partial capaclitances are determined by the formula

Cly = Coy = Cyp = —2 . (3-85)
3in ‘V

a

The capacitance between any two wires in the presence of a
third is determined by the formula

C‘:.\_-

dVs o (3-86)

2. A two-wire line over a flat conducting boundary (Fig. 3-65).

Fig. 3-65. A two-wire 1line
over a flat conducting boundary

P! .. (grounds).
f
< 2a, 1y
2 re'o'e

a) General case:

’ 2 ln'-zl'--lnﬂ--
Cuu sl 27 — % .

CalEhos ; (3-87)

b) Both wires are the same distance from the boundary:
a; = a, = aj; hl = h2 = h,
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C;o: = c.w=

(3-88)

¢c) Both wires are in a plane perpendicular to the boundary.
In this instance in formulas (3-87) it is necessary to place
d=hy—h; dy=h+h

The capacitance between wires .an the presence of a boundary in
any of the cases a, b, or ¢ is determined by the formula

v Cioe Caox -8
C;qncl,,-l--ézlu—;—c-;‘-- (3-89)
3. A three-wire line over a flat conducting boundary (ground)
(Fig. 3-66).

Fig. 3-66. A three-wire line
over flat conducting boundary
(ground)

Ay

N <

a) General case.

Partial capacltances are determined by the formulas:
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C;N'-" gy {2)3 == 8g9) 4 G35 (agp~—03q) + @13 {29g—2gy)

D .

a5 (933 — 033) -+ a3y (05— 033) + 19 (333 — 0z0)
. D

Clyp = -2 Cn—01) + o) in—w) + Snlen —on) .

D —

i = Suta=tutn (3-90)

Ciy = 21071~ %un
- D
= 1% — Ity
[/ ' ]

Czbcu

Cau

%y Jiae %3

where D=|oy, 0y o =-a“(lzaz,,-—z,,z,)+

T30 I3, Oy

I pel (731703 — 719733) ;- %13 (719290 — 72734 )i

i 2% ] d
G" —-'_—ln'—'" L § == Yoy TN e ._.1
= 1= I I T
1 2%y o d
Olog TN —remee — = — .’o
22 - DY lll a ' [T Gaz . ln d“ 2
~l 2. 1 é
Og3 = lnT' ¢”=a”=___ln__.'

i I A
dih is the distance between the Z-th and k-th by wires; dik is the
distance between the i-th wire and the mirror image of the k-th
wire.

b) The wires lie in one plane (paralle! to the boundary) at
equal distances from one another: (hy = hy = hy = h and d,, = du = o)

Partial capacitances are determined by formulas (3-90) when

(naa”?.n a,,"_‘:-hl.-ln -eai; . a,.aa”:—zit In I/-l-l-(—?-).;
' a,,z-zi—_.- ln‘/-l-i-(—:—)'.

4, A four-wire line two wires of which are united (Fig. 3-67).

when d/a > 2 the capacitance between wires 1 and 2 is determin: !
by the formula
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e xs
o _ o,c(-i)' (3~91)
a d
d Fig. 3-67. A four-wire line
M consisting of two pairs of
Y identical wires lying in

mutually perpendicular planes.

D

5. Two wires inside a eylindrical shell (Fig. 3-68).

Fig. 3-68. Two wires of infinite
inside a grounded cylindrical
shell: a) the wires are
located eccentrically relative

to the axis of the shell; b)

the wires are symmetrical
relative to the axis of the
shell.

The capacitance between wires 1 and 2 1s determined by the
formulas:

a) in the case of an asymmetric system (Fig. 3-68a)

C~

R _aew_y " (3-92)
LT T ( TR —ep

b) in the case of a symmetric system (Fig. 3-68b)

Gi=— e (3-93)
.(Rt+¢|'7

6. Two wires arranged between two grounded planes (Fig. 3-69).

I'ne cupacitance between wires 1is determined by the formula:
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Cr =~ 2
‘n . A u
ln(:u;“ (3-94)
Mty T P =5 Fig. 3-69. Two wires arranged

< between two grounded planes,
-8 } - ﬁ} . N
;%

7. Three wires ingide a cylindrical shell (Fig. 3-70).

Fig. 3-70. Three infinitely
iong wires inside a cylindrical
shell.

Partial capacitances are determined by the formula

it : 1
ey _
sa[Y3d __R—e ] 3. (3-95)
@ VaiRiReE

Clau= c;u_""' Crr==

where

- 2ns , L =12, _
C;J—' In(%'l—(%)'])v =123 (3 96)

8. 4 wire and two eylindrical shells coaxial with it, one of
which (the interior) is not closed (Fig. 3-T1).

Fig. 3-71. An infinitesimally
long wire surrounded by an
open cylindrical shell and
inside a ecylindrical tube.
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Partial capacltances are determined by the formulas:

Cou =373 (3-97)
&
c;n'—‘-"':—:k:r-’ (3-98)
. a i
= 1 Cy,,-Cs
Coe (L) ™ Gl (3-99)

9. 4 central wire and wire on the circumference inside a
cylindrical shell (Fig. 3-72).
Fig. 3-72. A central wire and

wires on a clrcumference inside
a cylindrical shell.

lui
Ciy =7t RJ' (3-100)
In%lnk_‘_—lu’. ;a [l ) ]}
F |n11—4u—1 -
Coy=m 2= (3-101)
ry T . R
'"?T' ™ h'"l [ ) ]l

where n 1s the number of wires.

10. Two wires on different sides of a flat plate of finite
thickness, having a cut (Fig. 3-73).

Partial capacitances are determined by the formulas
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3-73. Two wires on different
! siges of a plane with a slit.

rd
: 2%\8 = -3~ =12 " c..-C.
Cia a-.(?) PR ""S;';‘"h_ lol“:u.;
Co -~ 2r2
o f. S"l % ) V rysing I.
Cooy = —.
i |n("'"'§!)_;- (r,slnﬁ)__l
20, %,

(3-102)

(3-103)

(3-104)

11. Two wires on different eides of an infinite grating of

plates of finite thickness.

a) The wires are located at random (Fig. 3-T4a):

!1- sin T sin %2 ’ n

4 TR S 2
r, sin $in g '
'n[‘ [0 s el/ r, Fiv _|J
2a, o 2,

__%‘__' cl cl
. 208 101°“ 20
Cm:’(?)‘ T

Clu =~

Clp i gex | =
W ] L2 sing,, Ta, S Gy, 1’
| Fm Y T

where v is the number of the plate nearest the wire.

b) The wircs arce located symmetrically relative to
(Fig. 3-T74b):

117

(3-105)

(3-106)

(3-107)

the grating



Fig. 3-74. Two wires on different sides of
an infinite system of plates: a) wires
located at random; b) wires located in a
plane perpendicular to plates.

.

. i
-y when By, Ay &1

O

: | (3-108)
Twery T M
when h1 = h2 = h
2% nd ? cl cn . | lh—
g =7
Cux(Tfe 7Tl ) (5-100)

where Cioz and C;OZ are determined by formulas (3-106) and (3-107).

118



[ oTIPTOTY

Ll

T AT

T

CHAPTER 4

CAPACITANCE OF FLAT PLATES

4-1, General Remarks

1. The present chapter contains formulas, tables and graphs
for determining the capacitance of conductors having the form of flat
plates. In all cases when nothing is said to the contrary, it is
assumed that the thickness of the plates is infinitesimal.

2. Data are gilven on the capacitance of solitary plates,
capacitors, formed by plates of finite or infinite dimensions and
also about partial capacitances in a system of three infinitely long
plates. In this case one ought to have in view that the concept of
the capacitance of solitary infinitely long plates does not have
meaning.

4.2, Capacitance of Solitary Plates

The present paragraph contains formulas, tables, and graphs for
the determination of the capacitance of solitary plates of the
followlag form: a circular disc; a semi-circular plate; an elliptical
disc; a rectaagular plate; a circular ring; a conductor formed by
the union of eilther two coaxial circular plates, or two coplanar
circular discs, or two rectangular plates lying in parallel planes,
or two coplanar rectangular plates.
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In using the materials of the present paragraph one should have

in mind that the capacitance of plates of complex form can be
evaluated on the basis of the general features of capacitance (see
§ V-2), using the given data on the capacitance of circular and
ellipti~al dises.

1. Circular disc (Fig. 4-1)

Cy = 8. (4-1)

Fig. 4-1. Circular disc.

2. Semi-circular dise (Fig. 4-2).

: : Fig. 4-2. Semi-circular disc.
(2
o
The value of the capacitance of a semi-circular disc satisfles
the following inequalities (compare example 2-4):
8:a > C,y ;> 8:a-0,729. (4-2)
3. Elliptical dise (Fig. 4-3).

c.-am- (u-B)

= _
TN
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Fig. 4-3. Elliptical disec.

where K (k) — a complete elliptical integral of the first kind (see
Appendix I) with modulus kaVl——(-Z—)'.

If the ratio of the axes of an elliptical disc a/b monotonically
rises, then at constant area 1ts capacitance also monotonically rises.

The numerical values of the functlons Cy8ea = f(bla) are glven in
Fig. 4-4,

Ly ' ™ o [o.0n |coms o.ouj
' anl— / -3; o |o0.2220] 0,268 | 0,278
asl— P »e jo0 |o2 ]oo {008

d .
a¢ / % | % 0.26%0 | 0,287 | 0,3207 | 0,3862
a dle ol loz 03 |os
G
o | ouemw | 05208 | 08978 | 072 |
0 2 4 as ar .
| ) % . 10
Flg. 4-4. The rela- bie o o
tionship of the G
capacitance of an e o083 | om72 1.0
elliptical disc with

seml-axes a and b (a > b) to the capacitance of
4 circular disc of radius q.

4, A reotangular dise (Fig. U-5).

L. Fig. 4-5. A flat disc of rectangu-
T lar form.
-{—-o *» o
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The accurate value of the capacltance of a conductor in the
form of a rectangular (including a square) disc is unknown.!®

Th~ values of capacitance of a rectangular disc calculated by
the method of grounds (see § 1-3), are given in Fig. 4-6.

Furthermore, the following approximation formules can be used:

a)

Con . N . (4-4)
mln-l'f'—va—:-ﬂ+ln(m+l/l+m')+% PN

N ® A+m)Y1+m

3 Im
where m = a/b (see example 1=3):
b}
Con—208 _ (4-5)

!Determination of the capacitance of a disc of square form was
the subject of a number of works. The fundamental results of these
works are characterized by the following data for the quantity C'1
.(Cl is the ratio of the capacitance of a square disc to the

capacitance of a circular disc with radius equal to the side of the
disc):

1. G. Kavendish and J. Maksvell, 1879 [4-1] Cy = 1,1332
2. J. Maxwell, 1893 [4~-2] C, = 0,5666
3. Rayleigh 1894 [4-3] C, > 0,56418
4, G. Howe, 1919 [4-4] C, = 0,5287
5. G. Polya and G. Sege, 1951 [1-3] 0,56418 < C; < 0,59018
6. D. Allen and S Dennis, 1553 [4-5] C; < 0,5682
7. E. Gross and R. Wite, 1955 [4-6] Cy = 0,559
8. D. Reitan and T. Higgins, 1957 [4-7] C, =050

The mos. complete anzlysis of the capacitance of rectangular
plates is contained in the last two of the works, from the results
of which the hasic data given in para.l were obtained.
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Fig. 4-6. A graph for determination of the
capaclitance of a flat rectangular disec.

afd 1.0 1.5 2,0 .0 LX 2 1 d 100 g

Cytia } 0,566 | 0.45¢ | 0,401 | 0.239 | 0.308 | 0,188 | 0,130 | 0,004 0,074

5. Cirecular ring (Fig. U-7)?

. ucnel-
[ ]

é.=a-- { H (%) do, (4-6)

lpccurate expressions for the capacitance of a flat clrcular ring
have been obtained for a comparatively long time [4-8 to 4-10]; however;
they are so complex that they are of only theoretical interest. The
results of Nicholson [4-10] were obtained insufficiently correctly and
referred to some particular relationships between radii of a ring.
Higgins and Reitan [4-11] and Smayt [4-12] obtained rather accurate
numerical results and Smayt also gave approximation formulas. The
most complete results for the capacitance of a flat circular ring
were obtained by Cook [4-13], who gave an accurate expression for
the calculation of capacitance and conducted numerical calculations
for the typlcal relationships of the radii of a ring.
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Fig. 4-7. A flat circular ring.

%

where function H(8) is found from solution of the intec.-ral equation

am!-

ll(':)-sinb-cos’0+(-:-)' { “Hg) KO, Qdp=1 (4-=7)

wlth the nucleus

sint p.sec ¢-inlg -;- — sin%0-sec§-In tg-%

Kb, @) =: sect0—secl g :

The numerical values of the relationship of the capacitance of
a ring to the capacitance of a circular disc of radius b are glven

in Fig. 4-8.

1 b 1@ Lo | 1

J aed | oew | osou | osxe
mT/, se 1.9 13 | 18
T @

/ ey | omm | oeoms | oo
(/7]

1 ™ 20 30 .

. ¢ . “ " : t?- L C 1t 0.%10 |- 0,99 0.999

Fig. 4-8. A graph for calculation of capaci-
tance of a flat circular ring (dotted line —

extrapolation).

The capacitance of the ring can also be approximately determined

with the ald of the following formulas:
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Co ~8ub- %[ar@%— + l/n-. (-é)’-mu. %] X
A[I + (00143 —:—)-tg’(l.28——:-)] (4-8)
18 < 0,1% when bla>- L 1L

Gz —2oon(8 O (4-9)

L]
m(m 22
. b—a,

18 < 0,1% when blu < 1,1).0

6. Two interconnected coaxial circular disecs (Fig. U-9).

. |
C,= IGsa{f (0 dt, (4-10)

where f(t) 1s found from solution of the integral equation

Fl+ 4 (O — ot = 1. (4-11)
(x—l)'+( )

Fig. 4-9, Two interconnected
coaxlial discs.

The numerical values of the function -;—Zi—= (l;) are given in

Fig. 4-10. The following approximation formulas can also be used;

11f a greater error is allowable, formula (4-9) can be used also

for b/a > 1.1. Thus when b/a = 1.25 6 = 0.£7%, and when b/a = 2
8§ = 2.6%.
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!
0. [ 7] 5 ifa

Fig. 4-10. A graph for the calculation of

the capacitance of a sclitary z:onductor,

fermed by the unicn of twe ldentical
ccaxlal discs.

lia 0.0 0.4 0.8 0.8 1.0 12 1.8
5

".: 1,000 1.2084 1.2728 1,312 1,3824 1,4276 | 1,4874
lin 2,0 2.8 3.0 | 5,0 10,0 2.0
C

_l(:a‘ 1.5631 1,6220 1,6684 8974} 1.8810 1,997

Com> —— 7'°"'a e (4-12)
A A 1v]

{6 < 3,8%wnen la > 1,5; 8 < 0,5%when l/a > 2);

b) when la > |

Co~ 2'6“' - (4-13)
l+—;arcctg-;—

[6 < 3,6%wnen lla > 1; 6 < 09% when l/a > 2,5]

or

Con, . 60 (4-14)

o---l 2 a
= e
L |

6 <2 3% when lla > 2; 8 < 0,3% when l/a >-51.
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7. Two intercornected coplanar circular discs (Fig. U4-11).

Fig. 4-11. Two intercon-
nected coplanar discs.

The accurate value of capacitance is unknown. At rather high
l/a the following approximation formulas can be used, the first of
which is more accurate:

(4-15)

TS0

Cou__%_;_. (“l"lsa)
1 -{--;— -T

When 1/a > 3 the values of capacitance, calculated from formula
(4-15a) differ from the values determined from formula (4-15) by
not more than 0.7%.

8. Two parallel rectangular discs interconnected (Fig. 4-12).
Numerical values of C,/8za = f(d/b) at short distances between dises are
given in Table 4-1.

Fig. 4-12. Two interconnected
rectangular discs lylng in
parallel planes.

The follew.ng approximation formulas can also be used:
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Table 4-1. Relative
values of the capaci-
tance of the conductor
formed by the union of
two rectangular discs
lying in parallel

planes
d
hen-— € 1
(w en. < )
C,
. 4rea
o

0,001 0,008 0,04 0.02
ab ~

1 0,357 |0,359 [ 0,361 | —
2 0,255 0,256 | 0,257 | 0,259
3 |o,217 {0,218 | 0,219 | 0,220
4 [0,196 |0,1965| 0,197 | 0,199
a) when dla < 2, a/b > 1
Coe : e : (4-16)

b) when dla> 1, alb>1

C.zzc.‘.__|__. (u"l'])

C
14 =8
+ e

where C01 is the capacitance of a single disc determined from the

data of p. 4 of the present paragraph.

9. Two coplanar rectangular diece interconnected (Fig. uU-13).

Fig. 4-13. Two inter-
connected coplanar
rectangular discs.

The accurate value of capacitance 1s unknown.
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When dlap 1, alb > 1

Co=~2C0y 1 (4-18)

where COl 1s the capacitance of a single disc determined from data
given in clause 4 of the present paragraph, specifically

Come — ‘:‘" —. (4-19)

4-3. Ccapacitor Capacitance of Dises of
Finite Dimensions

In the present paragraph formulas, tables, and graphs are given
for the determination of the cipacitance between two conductors that
are the flat plates of finite dimensions or are formed by the union
of several plates. Such conductors are coaxial circular discs;
rectangular (specifically, square) plates, both arranged in parallel
planes, and coplanar; concentric coplanar rings; a coaxial circular
H disc and ring arranged inside a cylinder with an impenetrable surface;

and a circular disc arranged between two infinite planes.

l. Two coaxial circular disce (capacitor with circular plates)
(Fig. U4-14).?

.Cam-jf(f)dt, (4-20)

where the function f(t) is found from solving the integral equation

__..'.' UL d) - l'.'
o=t ro e

'Determination of the capacitance cf a capacitor with circular
plates 1s the subject of a very big number of works [ H-1h |=[H=171.
An accurate solution to the problem %s obtained #n [N-18].
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Fig. 4=-14. Two coaxlal discs.

The numerical values of the function C/8ea = f(l/a) are given in
Fig. 4-15. The following approximation formulas can also be used:

a) when la <\

‘ ’ . ‘ I . l .
Covugls 4 +.|n(|sz..7)- 1] (4-21)
(8 <58% when la < 0,4)

or
: c,_..,.._*“.“. (U=21a)
{8 < 15% vhen //a'< 0,1}
; b) when Ya>1}
L8
- Cex ’—_&M‘—‘. _ (4=22)
= [ ] i
(|81 <2,4% when lla>2; |3] < 0,7%when lia> 3]
or
- dea
Csl__,_._._ (4=23)
s |} .
[18] < 2.9% when lla > 2,5;.13] < 0,4% when l/a> 5p.
!Formulas (4-22) and (4-23) give an overstated value of
capaclitance.
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JHR =l
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2\' 1
"y 0
|

() F 4 6 & N0 12 # £ R Ul

Fig. 4-15. Graph of function which charac-
terizes relative capacitance between
circular coaxial disecs.

[
ls 0.0 0.t 0.4 0.8 0.8 1,0 .2
C 3
oy - 4.818 18514 1.1978 1,010 0.9104 0,8380

s 15 2.0 2.5 3.0 8.0 10,0 2.0

T.c"‘ 0.7844 0.06M 0.6517 0.6240 0.6708 0.838 | 0,518

ﬂ 2. Two tdentical rectangular plates (a capacitor with rectangular
plates).

The accurate value of capacitance is unknown.

a) Parallel plates (Fig. 4-16).

Fig. 4-16. Two identical
parallel plates.
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The approximation numerical values of capacitance at some values
of a/d and b/d are given in Table 4-2, and for square plates (a = b)

Table 4-2. Relative values of capacitance
between two rectangular plates lylng in
parallel planes.

..:_ 0.50}0,666[0.83 [0,85] t.0] 1.8] 2.0 2.68] 30]3.33) 40] 50| 511 60
.’7 0283 [ 0,50 | 0.50 [o23]0s0 fos0 | 1.0 20! 10| 20 20l 5.0l 0.7 ] 30
-zf; o3| o184 | 0170 0123 | 0130 ] ot | 200 ] 03t2 | osee | 0t | 0200 o.aas}m o
- r e Fig. 4-17. Graph of
" . s [ . . -
f/‘ ; R function which charac-
) “ ' terizes relatilve
% C capacitance between
& two 1ldentical square
plates lying in parallel
L 4 planes.
0 dja 0 0,008 0.028
P - Clims - 8.9 3,4103
5 ¢ | oos | om0 0,20
sl - : & Ciimea | t.ozes]| 10192 | o.5008
0 f - -' ‘ﬂ . dja . 0,50 1,00 [y . -
L T J--,,I7 cime | o2ams| st | o
0 Q2 a4 38 48 W

The following approximation formulas can also be used:

when ald& 1, bld L1
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e T R e e v e &

where €y, is the capacitance of a single plate (p. 4, § U4=2),
when a/d>3, bld>3

C=¢s-abld(l 4 V/x-dla(l + In2rald)} X

X [1 4 U=-dIb (1 + In2xbld)}; (4-25)
when ald > 3, bld > 1
Cavua-bld[1 + +-dia(t + In2wald)]; (4-26)
when a/d> 10, b/d> 10
C<e.abld (4-26a)
B 10%)

b) Coplanar plates (Fig. 4-18).

When bla »1

cg.b-!:(-ﬁ(*-;)l-. (4=27)

where
| 'a '; .k'-v ‘—P.
1422
‘ .
- CT KWK '

The values of function -J-—r&)——f(ﬂld) are given in Fig. 4-19).

Fig. 4-18. Two identical
oppositely charged co-
planar plates.
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Fig. 4-19. Graph of function which
characterizes relative capacitance
between two ldentical coplanar plates.

ald | 0.00025| 0,0025 | 0.0270 | 00590 | 0,2071 | 0.4Y29 | 1,081

1.738

4,500

49,50 +5.8

Crad | 0.346 | 0,461 | 0.6254 | 0,7353 | 1,000 | 1,210 | 1,599

2,347

3814 5.2

When bla» t, ald > 1
Cz%zbln[ai (1 +2%)].

When bla> 1, ald € 1

C, 1
Al S I
Ce= Sk e
4red
where COl

given 1n clause 4, § 4-2,

134

(4-28)

(4-29)

(4-30)

is the capacitance of a single plate determlined from data



3. (oncen :ric coplanar rings.

a) The general case (Fig. 4-20).

'Fig. 4-20. Two concentric
n coplanar rings.

< Y

N AN

\\v/ﬂ”://; \\\\\
2 \‘m\“\\\\‘

The numerical values of the function ——-c—--f(—"-) at L =g
475rg-0,9 L re
and various r2/r3 are given in Fig. h-21,

Gfeae09
9833 ﬁ"’”‘
, |
: / / 9958
] aesr ¥ /
s | a9l
!
4 / l
: siady
) |
2 7
LT | e
1 1 =
. |
o G 02 a3 a4 05 06 ’ a7 68 8% r/n

Fig. 4-21. Graph of function which charac-
terizes relatlve capacitance between two
concentric coplanar rings.

3 14
i s 0.417 0.4 050 | oses | o687

[}

Iy
’7'- 0,800 0,667 0,667 0.687 | 0,833

c
4xer,-0,9 .6 .15 .86 . 2,08 (¥ 2)
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If ry <15 (y—r,), then capacitance practically little depends
upon p3, i1.e., the external radius of the external ring can be
considered infinite.

Example 4-1. To determine the capacitance of the circular
capacitor being used during measurement of the dampness of wood, at
the following dimensions: rg = 0.5 em; r, = 1.5 cm; r, = 2 cmj
r, = 3 cm.

3

In this case

s _3_.:& in—!s.g-o.s; i-—:—-o,“ﬂ
[ ]

Using Fig. 4-21, we find that for the relationships of radii shown

C .28, whence C - 28648 — ' —.0,5.102.0.9= &' 143.10~7 F = &.1,43 pF, €' 18 the
4rcry-0.9 42.9.100

relative specific inductive éapacitance of the medium.

b) Disc in the circular cut of an infinite plane (Fig. 4-22)

. K '
sné
Cz&r,(l+%)u T (4-31)

where K is a complete elliptical integral of the first kind with

modulus k=-L1; snf— an elliptical sine (see Appendix 1).

s

Fig. U4-22. A disc located
in a circular cut of an
infinite plane.

O’

¥&m

The numerical values of the function -sg--f(%) are given in

vy
Fig. b4-23.
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Fig. 4-23. Graph of a

-/ function which charac-
terizes relatilve
/ capacitance between a
plane with circular

cut and a disc in this
cut (dotted line -
extrapolation).

8 r,/n

From (4-31) can be obtained the formula
C~2 [1+—fl-+ / I-L‘-']ln-li (4-32)
s n l (ﬁ) -0’ .
. >

which glves the results differing from the data of calculation from
formula (4-31) not more than 3%.

When rJr, €1
C ~ 8ery, (4-33)

i.e., the value of the capacitance between a disc and plane when the
radius of a disc is much less than the radius of the cut 1is approxi-
mately equal %o the value of the capacitance of a solitary disc
(compare clause 1, § 4-2).

Example 4-2. A 1] x 1 x 1 m tank made from thin insulating
mater .i with specific inductive capacitance which insignificantly
differs from (e = 83 eo). On the bottom of the tank is a thin metal
sheet which possesses 1n the center circular cut r, = 5 cm in radius
with a symmetrically metal sheet in it 2y T 1l cm in radius that
possesses the same thickness as the plate.

To find the capacitance between disc and a plate.
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In view of the considerable significant dimensions of the sheet
in comparison with the radius of cut, it is possible to consider the
sheet an infinite conducting plane in an infinite medium. Taking
account furthermore of the fact that the specific inductive capacitance
of air, it is possible to assume with sufficient accuracy that the
plane considered is separated from the lower half-space by an
impenetrable boundary (see § V-2).

In this instance an electrostatic field exists practically only
in the half space. Using the principle of mirror image, (§ V-2),
desired capacltance ¢ can be determined according to one of the
formulas (4-31)-(4=33) or from Fig. 4-23 with calculation of the
relationship e = 1/2 C.

At rl/r2 0.01/0.05 = 0.2 from the data of Fir,. U-23 we find

c”"‘ - 1.070

Therefore,

—0,01-1,07 = 31,2.10~2 P = 31,2 DF.
4-9.100 3 F 2 P

& = 1/2:87,-1,07 = % .8.83.

If we use for calculation formula (4-33), then
&' = 1/2.8, = 9,3 DF.

The relative error in determining the capacitance between the
conductors being considered from formulas (4-31) and (4-33) is

&-2C 31,2—29,3

L T 100% = 33 +100% = 6,1%.

4, Coaxial dise and ring inside a circular cylinder with an
impenetrable surface (Fig. 4-24). '

C- L] . (u-3u)
._}__:_h
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Fig. 4-24, Coaxial disc
and ring inside a cir-
cular cylinder with
impenetrable surface.

The numerical values cf the parameter a are given in Fig. #4-25.

«®

|._q,, Fig. 4-25, Graph for
y J determination of parameter
0 . ¢ which enters formula
. / (4=34) (dotte” line —
601 / ; extrapolation).
40 / §
30 [ ~
o :
[/}
w4 —
ﬁ: Q29

0 02 04 a8 g8 i
a-. 10 : (a)

' A )
- - .%eé:,
0,0 f 0,20 | 0,20 | 040 | 0,50 | 060 } 000 | 1.00 - rm.u
s
a/d u":cn

0,28 0,14 'o.m 0,27 | 0,212 | 0,213 ] 0,213 | 0.214 | 0.214 | 0,214 | 0.003

0,50 el il ] we L] Lm o2

0,78 321 | 5.0r | 608 | 6859 | 688 | 697 } 104 | 207 | 2.07 | 008

KEY: (a) Absolute error limit.

5. Circular diegc and two infinite planes parallel to it
(Flg. 4-26).

C= étbjg(l)dt... (4-35)
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Fig. 4-26. Circular disc,
between the infinite
planes, interconnected.

Function g(t) is found from solution of the integral equation

* i b = = =
gO—+ S K(t—Dg@)ds=1

with nucleus

K(f—-)=—2( NE N

where

A =.. 20 dug == n2 vhen ne=0; -
= Je’m 2“'(2"-1)(2nl)~(2n+l). (when n> 0)

.((2n+l)-2#‘_z.'+|' the zeta-function of Riemann (see Appendix 1).
Res

For the relationships blk(i

Gereed e (3] + -2 ()

8¢d A

+[a‘-'l"’- c(a)] ) (4-36)

where ,,ﬂ.’ C(3) .202
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4-4, Capacitor Capacitance of
Plates of Infinite Length

The present paragraph contalns formulas, tables and graphs for
the determination of the capaclitance between two conductors that are
flat plates of infinlte length or formed by the union of several
plates. Among the conductors being considered there are two coplanar
plates; three coplanar plates two of which are connected; two
mutually perpendicular plates; two parallel plates; two plates at an
angle with eath other; plates perpendicular to two infinite planes;
and plates parallel to two infinite planes.

l. Two coplanar plates.

Formulas for determining capacltance per unit of length between
two infinitely long plates lying in one plane are given in Table 4-3.

Example 4~3. To find capacitance per unit of length between two
plates a = 10 cm wide in a medlium with speciflc inductive capacltance
€, 1f the distance between plates is d = 1 cm.

In accordance with clause 2 of Table 4-3 the calculation is
made from the formula

— X&)
Cy .K(k)

where t!ie moduli of elliptical integrals are

sy

K® =] — M = 0,9977324.

- o.oom

[

From the values of modull found with the ald of the table of
Appendix 2 we establish that

K (h) = 1,57169; K (k') = 4,43287,
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Substituting numerical values into the given accurate formula,
we obtain '

C = 4,43287

X a-l—"s—iﬁg- L 2.82048-0.

If we make use of the approximation formula given in clause 2 of
Table U4-3, then

Clop = == 1n [4(1 +2_3.)] -

-2 [4 (1 + 2-%)] = 2,82075.,

Thus, the relative error of the approximation formula for the
case consldered 1is

c,—C 2 820454 — 2,82075¢ y
- A 21D 10092 = = y 100% = — 0,011%.
b Wox'= 2,82045¢ Ly

With increase in the ratio of a/d this error in absolute value
becomes still less.

2. Three coplanar plates, two of whieh are interconnected.

The fermula for determining capacitance per unit of length
between two Joint plates and the third plate (two plates have

identic2l width and are equidistant from the third) are given in
Table -4,

3. Two mutually perpendicular plates.

a) Plates of identical width (Fig. 4-27).

c‘-.' ‘l . (u-37)
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_ Fig. 4-27. Two mutually per-
s pendicular infinitely long
plates of the same width.

The parameter g0 <€ ¢< i) is determined from the system of equa-
tions (for example, by means of exclusion of the unknown parameter p):

- % ('— "4—) o1 —2-sin2p— w-cos;np+24'-llnﬁxp 4.0

%G l—2qcos2np+2q‘cns4np-2q'-coo6np+...'
(4-38)

A= % ('—-j — g-cos 2np L 294 sin 4=p + 39%cos Bnp—, .

86) ¢ sin 2zp — 204 sin 4np 4 39%slnbrp — . .

where

YA "
A= |+_‘L' 0<p<—2-.
A ‘ F .

8 (x), % (x) 1s the theta-function and its derivative (see Appendix 1).

The approximation value of q can be determined from the formula

1 1=)
qlg-ﬁ-.ﬁ. (u-39)

For values of > 04 this formula gives the value of the
parameter g with error exceeding 1%.

A more accurate value of q can be found from the formula

1\
%z?ﬂ—Dvwﬁh“ﬁW-

X
M4 1—gfs ,ﬂ

@ +3 2 — (1 —qlu)]

@ 1—a) Vo (=)

(4=40)
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where

L4
=g. 1l
¢ 1—2

The numerical values of the function -C,Ia:a,(a/d). see in Fig. 4-34
at ¢ = 90°

b) A plate and a half-plane (Fig. 4-28).

Ci=s¢ '“l . (4=-41)

g~
- q

where g(0< ¢< 1) 1s determined from formulas (4-33)-(4-40) with
replacement in them of dimensionless parameter A with A, = VA,

. -~_:.l_ Fig. 4-28. Mutually perpen-
) : ' dicular plates and half-
. . o ..it- v oan - plane *
v x
N\

c) A plane in which one plate passing through the middle of
another plate 1s located.

The formulas for determining the capacitance of systems of this
type are given in Table 4-5.

h. Two parallel plates.
1) ''wo plates of different width (Fig. 4-29).

Dependence C/dne = f(b/d) at some fixed values of b,/b, 1s depicted
in Fig. 4-30.
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c e ] Fig. 4-29. Two parallel
I

plates of different
s { width.
b I
|
(¥
Cif4xe ‘ a R E Y.¢ :
a9 . . ‘//
5 2
a8} //r
1
po2] /

as L_°r_ : /

as - / .
/4

Q4 —— 7
o1 -///

%4

/

/
. #

0 T 2 €« 5 7 < 6/a

Fig. U4-30. Graph for determination of
capacitance between two parallel plates of
different width (dotted line — extrapola-
tion).

b) Two plates of identical width (Fig. 4-31).

_ c,-.?'f-, (4-42)
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Fig. 4-31. Two parallel in-
finitely long plates of
identical width.

e co— - e

{

and the modulus of k elliptical integrals 1s found from the equation

E

" f==arcsin l/-—‘l.-(l—-%)'

where F(P. k). K; E(B, k)., E are elliptical integrals of the first and
second kind; Z (.4 is the zeta-function of Jacoby (see Appendix 1).

Numerical values of Cz/e depending on b/d are given in Table 4-6
and in Fig. 4-32.

Table 4-6.

b/d | 00078 | 0.0170 | 0.0308 | 0.0 .0,0723 ] 0,0998 | 0,1338 | 0.1731 | 0,213 | 0,279

cye | osors | 0.5, ] oeies ]| o2 | o.mm7 | 0.0508 | 0,001 | 10000 | 1.0833] 10780

s1a | 03481 | 0,438 | 0,508 | 0.0078 | 1,260 | 2.1778 | 2,500 | 3,088 | 4,802 | 6,008

Cyie. | vamse | v.0on | 18000 | 19023 | 2,007 | 3.4807 | 2.0198 | 5.0029 | 6,0000] 7.0004

.

sa | 7913 ] sse | o0 | 11,020 | 10,038 | 17,259 | 20,392 | 23.533 | 26,678 | 0.0

Cyle | 8.9127 | 10,108 | 11,460 | 12,732 | 18,08 19.008 | 22,282 [ 25,465 | 20,040 | 31,83

For approximation calculation of the capacitance plates being
considered between the following formulas can be used.

At bld»1

C,a:ln-z—-[l-}-—‘!"-'.--:-(!+|n2a%-)]. (4-43)

< 1,5% at -4 <bld<28].
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Fig. 4-32. A graph for the determination of
capacltance between two parallel plates of
i1dentical width.

At H<Hd< D

P
] L
C,me. -t [1+_:.'{.:[141n(1+._)]}
) BLIE%L ¥
At b/d > 32
O
C,:xl-—;
13 < 3%)
At b/d << 1
Cy=x

-

[131<03% at bid < 0.25].
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5. Twe plates at an angle to one another.
a) Plates of identical width (Fip. 4-33)

c'-‘- ‘l A (u"u.?)

n—
q

where q(0<¢< 1) is determined from the system of equations (for
example, by means of excluslon of the unknown parameter p):

)
h= %0

- } — %9 cos (2rp —¢) + 24"cos2(2np-—g)-24'c033(21:p—7) +.a0,
1 — 29 cos 2rp + 2% cos 4mp — g cos brp + . oo 4

“4-3
‘ S

o @sin(2rp—g) —24sin2(2ep—g) + 3gPsin3(2p—g) ~.. . , (4-148)
¢-3in 2np—2¢4 sin 4rp 4 3¢* sinbrp—. .. ’

- 1 1
A l/-l-l-—c—‘ °<.P<—2‘.
d

8 (x). 8 (x) 1s the theta-function and its derivative (see Appendix 1).

A=

Fig. 4-33. Two plates of equal
width, located at an angle to
each other,

The approximation value of q can be determined from the formula

] )
-l 1= (4=1
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A more accurate value of q 1s found from the formula

(l—l)a"-+ a(cos29—N) +3
3 ; o'l !

@=
where

a=(cosp—2P+ (1 + qjp)sintq; (4-50)
B=(cos@—N?+ (1 + gin) sin*q;
1=(4cos@—N) (1 + ¢l) sin@cos g;

8 (1 — cosg)-(1 + )
{cose—2)(1—=2)

Numerical values of cz/e depending on a/d are given in Fig. 4-34.

7-5‘

_ 20°
f—__l_”. e
,f*"'EE:-" i

——y
X

—

o 2 4 6§ 8 N0 12 tafd

Fig. 4-34. A graph for determination
of the capacitance between two plates
at an angle tc one another (dotted
line — extrapolation).

b) Plate and half-plane (Fig. 4-35).

c,_;._"".“.., (4-51)

g —-
¢
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bl it |

Fig. 4-35. Ar infinitely
long plate and half-plane
i at an angle to one
9 ) another.

where g0 < ¢< 1) 1s determined from the formulas (4-U48)-(4-50), in
which the quantity XA 1s replaced with A, = YKk

6. Plates perpendicular to twc infinite planes.

The formulas for the determination of capacitor capacitance per '
unit of length in systems consisting of one or two plates between
two planes are given 1n Table 4-7.

7. Plates parallel to two infinite planes.

Formulas for determination of capacltor capacltance per unit of

length for one or two plates arranged halfway between two planes are
given in Table 4-8,

4-5, Partial Capacitances in a System of
Many Infinitely Long Plates

Formulas for determination of partial capacitances per unit of

are given in Table 4-9.

Example 4-4., To determine complete and partial capacitances per
unit of length between strips in a shilelded connected strip line
with odd wave mode (Fig. 4-36), if 2h = 1 cm, b = 0.5 cm, 2d = 0.5 cm
and the dlelectrie is air.

We find first the partial capacitance between strips ¢

231
using the formula of clause 5 of Table 4-9.
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Table 4-9. Formulas for determination of partial capacitances in a

system of three inflnitely long plates.
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Table 4~9 (Cont'd).

4

[

o

~

~ [ad

.| System of con-
1| Aduetors

g

L

Calculation diagram

Calculation foimwias

4 | Two plates
arranged sym-
metrically
relative to a
cut in_an infi-
nite plane

where

5 |Two united
planes halfway
between which
there are two
plates parallel
to them

6 |{Two united
planes between
which two
plates perpen-
dicular to them
are symmetri-
cally located
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e e Fig. 4-36. A shielded
T — connected strip line
14/ | Ca with odd wave mode.

- T

o ( ‘;‘ . 0.25(); 0,5
sh (.l . M).sh (i. : _9&)
g2 :'5 3 95+025 224 - o,
ch'(—f‘ ..-..T.s._'..)

(M) == | — &t = ] ~-0,0276 = 0,97243

.‘('k;)’ -1 — A 1-20,9381 = 0,0810. .

Further with the aid of Appendix 2 we find
K= 1,682 K = 3,105; K, = 2,806; K, = 1,508

Substituting the numerical values into the formula for determina-

tion of capacitarce we obtain

= oK. K Lgsst. o-'z(_az.'.gi_l-i'“_s.)- F/m.
Camt '(x K;) sest 102 (38 28] w2z pF/

The partial capacltances of each of the strips relative to the
grounded planes are determined analogously

- - .K - . . nc.?.'ﬁ-a 4
Co Ci z.id- 2.8,654.10~ 5% 11 pF/m

The f'ull capacitance between plates 15

Cr= Cou + 8w 0 Ko ~a854-10-2.30% - 179 pF/m.
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CHAPTER S
CAPACITANCE OF SHELLS

5-1. General Remarks

1. In the present chapter formulas, tables, and graphs are

given for the determination of the capacitance of conductors in the
form of open and closed shells.

Especially considered are open shells of random form, and also
any (including infinitely long) shells enveloping other conductors.

The thickness of the open shells in all cases (if not contrary) is
assumed infinitesimal.

2. Closed shells not enveloping other conductors, in an

electrostatic sense are equivalent to the contlinuous conductors of
the same form,

5-2. The Capacitance of Solitary Open Shells

In the present section

data are given on the capacitance of
solitary conductors in the form of open shells which possess the

form of a hollow spherical segment, a hollow paraboloidal segment,
or a cylindrical tube of finite length.!

'Also known are the results on an electrostatic field, and re-
spectively the capacltances of hollow spherical shells with one [(5-1]
or two [5-2] circular cuts. These results, however, are so complex,
Lhat. thelr utillization for computation of capacitance is quite dif-

'icult; therefore, data on the capacitance of the shells in vhe
present paragraph are not given.
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1. A hollow spherical segment (Fig. 5-1).

Fig. 5-1. A hollow spher-
ical segment.

.
-

a) General case:

Co.j~v 4*60(1—3::—"'-'-)-. (5-1)

The values of capacitance can be determined also from Fig. 5-2.

Glt)f4nea

98 ' — - —
g AN

o ' .\\
IR 1IN

N\

0 ‘: 3= I*z iz jz 4x ix “‘

Fig. 5-2. A graph for the determination of
the capacitance of a hoilow spherical seg-
ment (dotted line — extrapolation).

C
—,-'-Q’— 0,920 { 0,909%1 | 0.97493 | 0,95221 | 0,91907 | 0,87487 | 0.81831
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(Continued)

[} —’—.' ‘-L. _.l-g -Lg —.’—: .—’-‘ ._sg
[} L} 18 ] (1} (1}

oM | 2090 | 0,000 | 0.57118 | 0,47583 | 0,342 | 0.24e78 | 012060
4esg .

b) A hemispheric shell (8 = n/2):
Co=4ma (-1 + L) = 4na-0,8183
o ) 9 " a-U, . (5=2)

2. A hollow paraboloidal segment (Fig. 5-3).

A .
C.=§;-a|[qo(1)df. (5-3)

where the function ¥(t) is found from solution of the integral equa-
tion of Fredholm with a continuous nucleus:

m—%j%)-lf(p. D=1, 0<EST,
and

p=hla,

1—ut l—w

K@ =122 K@ — B+ 52 KM —Eo,

K, E are complete elliptical integrals of the first and the second
kind (see Appendix 1) with moduli

. ple—H plx+6)
p:s R AR
Vitp—tp Vitots+ep

'ne dependence of capaclitance on the quantity h/a 1s represented
in Fig. 5-4. Furthermore, at rather low h/a the following approxima-
tion formula can be used:
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|

- 12;?:35 ) 2—:'). 1029:;91& ( ) ]

- st + o,dsaaa(z —') —0 020832 --) +0,00923 (2 %)

Co=~ Bea[(l-{--‘-'z-(zl'_) -1 2_) + ")

—0,00504(2 ZY' +-000310(2 3-)"-...]

8<0,1% at 0<hia<12). .

=
: . ' Fig. 5-3. Full paraboloidal
segment.
<
2 Joa for]as ] os
Go/8es
M ' ~So. 1003} 1028] 1.0 | r.oer
u o
:l / (Continueqd)
g / o+ |os | osfos]re
S |romr) soss| ran | ram
)
102 (Continued)
Y 7 15 A 4 1.2 15 2.0
-;.9.— 88 | ars | e

Fig. Y-U4. Graph for the determination of the
capacitance of a hollow paraboloidal segment.

(5-4)

If n/a < 0.3, then the capacitance of the paraboloidal segment
is approximately equal to the capacitance of a circular disc a in

radius (the error of such replacement does not exceed 2.7%).
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3. Cylindrical tube of fintte length (Fig. 5-5).

Fig. 5-5. Cylindrical tube
of finite length.

The numerical values of the capacitance of a cylindrical tube of
finite length are given in Table 5-1 and in Fig. 5-6.}

The following approximation formulas are valid also for the
computation of capacitance:

Cy:=4rea Leu. =
o In(ls-%- when —<4; (5-5)
ol
C.._’\’.‘ttd—T&'—-:—'-_when 9>-£->4. (5"6)
")t |

Note. The values (,/8ea when h/a < 0.5 are determined from

formula (5-4) 1th an error of <0.1%; at A/a > 0.5 by
means of numerical integration with error <17%.

lua-';-. 4—% . ( )
C.&-l-@:l— l+-;-(|-;%i-——l); D 5-7

IThe values shown were obtained on the basis of the results of
works [5-3 thru 5-5], and also from the data of numerical calcula-
tions, politely given to the authors by Professor L. A. Vaynshteyn.
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Table 5-1. Relative values of capacitance of
a finite cylindrical tube.

.%_ 0.1 03 | 05 | 07 | o9 1.1 1.3 1. 1.8
T‘-‘-_ 0.6192 | 0,7922 | 0,9122 {"1,0141 | 1,1066 | 1,1929 | 1,2748 | 1,3534
=ia : ’
.%. t,7 | 1.9 ] 21 | 23 | 25 | 27 | 29 | 3.1
—Co | 1,420 | 1,502 | 1,5730 | 1,643 | 1, 7118 | 1,786 | 1,8441 | 1.0008
4zca
_:_ 35139 ]| 45 49| 59| 6y | 79 ] 89 |99
_iE-_ 2,0346| 2, 1571 [ 2,3354 | 2, 4514 { 2,7314 | 3,0015 | 3, 2620 3,5158] 3, 7638
~ea .
F;. 105 | us | 127| 2 25 60 | 100 | 1000
::a 3,9097 | 4,i494 | 4,4314 | 6,0519 | 7,002 | 13,632 | 20,332 { 68,900

Gfnea :

) 0 20 4« 6 8 la » =

3 ?-d."'

sﬁ"’—
. ;
1
; .
) .
0 1 2 3§ ¢ 3 7 8 9 U1

Fig. 5-6. Graph for the determination
of the capacitance of a cylindrical
tube of finite length.

When 1/a >> 1 the conductor considered becomes a rectilinear
wire, and the formulas glven in § 3-2 can be used to calculate 1its
capacitance.
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The errors of formulas (5-5)-(5-7) are characterized by the
curves of Fig. 5-7.

HX

, T

2 A '

' - 15 5 ifa
\

d V4

4

Fig. 5-7. Graph for determination of the
inaccuracy of formulas (5-5)-(5-T7).

5-3. The Capacitance of Solitary Closed Shells

The conductors considered in the present section can be
divided into the following groups: conductors bounded by spherical
surfaces, conductors of ellipsoidal form, conductors of toroidal
form, a cylindrical conductor of finite length, and conductors in the
form of regular polyhedrons.

The capacitance of conductors of more complex configuration can

be evaluated on the basis of results for the capacitance of a sphere,
a cylinder, a tetrahedron, a cube and an octahedron (see § V-2, and
also [1-31).

1. Sphere {(Fig. 5-8).

C.=4‘m-¢. (5‘8)
2. Two nonintersecting spheres.

a) General case (Fig. 5-9):
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Cq = 4xe-ab-sh G.E[b.s‘l na+tash(n—l)a u
'3

] 1 N
ashna+bdshin—1)a —l-lhnc]. (5-9)

= @p—act—8
. u Arch—-————m .

1, W
SN

2t

Fig. 5-8. Fig. 5-9.
Fig. 5-8. Sphere.
Fig. 5-«9. Conductor formed by the union

of two nonintersecting spheres of dif-
ferent radii.

At low values of the parameter a/27 the approximation formula
can be used

1. 9
1 a+tb

Co=4dm(a -} b)- (5-10)

a
1—_a_

@

8<1,0% at a20<0,5; bla <0,5].

Accurate and approximation numerical values of the function
00/4ﬂsa = f(b/a) at various values of the parame.er a/2l are given
in Fig. 5-10.

b) Two intersecting spheres of identical radii (Fig. 9-11):

Co = 8maa-sh 5.2 (::?..;“ , (5-11)

where B = Arch 1/2a.
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“
13
a2
Z
N EE
N B )
Fig. 5-10.

Graph for determining the

capacitance of a solitary conductor
formed by the union of two noninter-
secting spheres of different radil.
————— accurate valuegs, — = -~ - —
approximation values.

dle
- 0,08 0,10 0.2 0.40 0,60 0% | 00
o
0.00 1.00 1.008 1,198 1,39 158 | 17se | 1.9
0,08 1,045 1,09 1181 1,361 52 | 1| s
0,10 1,040 1,080 1,162 1,35 1489 | 10653 | 118
0.20 1,032 12084 1129 60 | iso | vsm | vew
0.3 1.025% 1,049 1,100 1,203 1.313 1,429 1,548
oo | 1Los 1,008 1074 1,187 1247 | 135 | 1458
0.5 ol | 1.0 1,054 1118 1 | oias | ise
0,60 1,008 1,017 1,037 1,088 1,182 - -
0,70 1,008 1,010 1,024 1,062 (L £ =
0,30 1,002 1,008 1,018 = = = =

At 21 = a + b (adjoining spheres)
{

ba ot | oare | 0,250 | 0,333 | 0,420 | 0,538 | 0667 | 0018 | 1,00 '

-ﬁ%— 102 | tooe | .20 | 1.0 | voro | nuas | 1o | 0.2 lﬁll
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Fig. 5-11. Conductor formed by
the union of two nonintersect-
ing spheres of identical radii.

For a rather low value of the parameter a/217 an approximation
formula can also be used

C, 2 8xea.— (5=12)

B<03% at a2l <085).

The numerical values of the function Co/4nea = f(a/l) are given
in Fig. 5-12.

¢) Two touching sphere of different radii (Fig. 5-13).

I T | W ol

omter i L)

—4(1+75)) (5-13)

where ¢(1 + x) is a psi-function (see Appendix 1), y is the Euler
constant (y = 0.5772...).

The table of values (1 + z) is contained in Appendix 6.

The data of the table to Fig. 5-10 can be used to determine the
capacitance of two tangent spheres provided 21 = a + b.

The approximation formula for rather low b/a has the form

D

Co=~4m (a + b)] 1—- (5-14)

)

R<08% ,¢ bla<025).
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Qﬁm«

- 2 a3 a/ 4& as as .!

Fig. 5-12. A graph for determining the capac-
itance of a solitary conductor formed by the
union of two nonintersecting spheres of iden-
tical radius. 1 ~—————— accurate values,

2 - = —-— - approximation values.

Fig. 5-13. Conductor formed
by two touching spheres of

N " different radii.

d) Two intersecting spheres of identical radii (Fig. 5-14).

Cy = 8rea-In2 = 4ma. 1,3862. (5-15)
3. Conductors bounded by two intersecting spheres.

a) General case (Fig. 5-15).

0L,
<o 2x,
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KY . Fig. 5-14., Conductor formed by
\\\h "\ two touching spheres of iden-

Fk-/ 0 tical radii.

Fig. 5-15. Conductor bounded by two intersect-
ing spheres.

At w < 7 the conductor has the form shown in Fig. 5-15a; at
w > 7 (Fig. 5~15b) the conductor has the form of a spherical hole;
at w = 7 (1limiting case) the conductor degenerates into a single

sphere.

Radius a is always finite, radius b is found from the expression

a-sin®
b= o

and can assume infinite values.

In the latter case (6 = w = 7; T < w < 27) the conductor has
the form of a spherical segment (Fig. 5-15c¢).

At 6 = w/2 (w < ) and at 6 = 7 - w/2 (w > ©) the radii of the
spheres are identical: a = b.

For any of the conductors of Fig. 5-15 capacitance ic determined

f'rom the formula
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a:sint, ::—-’:.-r _3.2“'(:: %)X

X['P(n+-;:,-)—\!'(n~£-+%)+ln£-]r, (5-16)

where ¢(x) 1s a psi-function (see Appendix 1).

If w 1s a rational fraction, multiplied by m or 2n, then the
capacltance of any of the conductors in Fig. 5-15 can be expressed
in finite form:

when . o= =2 < (1<ng2m)

C. - h;;a:l:o X

B [ =] -l e . | -4
) Y=
X
I :?’ ’?d""(u*' —1)[ (:- Py AP P
(- sn - '
+2 2: 2: = —@r—1X
Cﬂ---mm..

to-d . :
' H -1
XZ“E_'“'} (5-17)
=) 2 .
at
®= <2n(l<n<2m—l)
lm -sind
a.sn X
o ]
(1. sln‘—
cos )—cm—]

%At high n the series contained in (5-16) decreases as l/nz.
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For the case w <« n (Fig. 5-15a) the formulas are still more
simplified and have the form:

at w = 2u/m (m = 3, 4, ...)

J

c,.‘m.{._L:;ern_',

3

[ -

. -1
cin(h‘-ﬂ) dn"’—" ' (5-19)
at w = m/m (m = 2, 3, ...)
L)
Co = 4xea]l + sin® : J (5-20)

The numerical values of the quantity ¢ /4nea for some w and 6
are given in Table 5-2

The numericai values of the capacitance of spherical segments
Co/4mea = f(w) are given in Fig. 5-16.
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Table 5-2. Relative
values of capacltance
of a solitary conduc-
tor formed by two in-
tersecting spheres.

S
4rsa

<
9

1,35 1,36 = | —~

0,937|0,9870,84610,768

» nig' wja joofa ]

0,99110,775]0,818) 0,475

To/4R 6
] 40
N \ Fig. 5-16. Graph for the deter-
‘a8 mination of the capacltance of a
spherical segment.
gs
Q4
a2
—_t Jo

I= . fx2%

b) Particular cases.
The formulas for the determination of the capacitance of some

typleal conductors formed by the intersection of two spheres are

iriven tn Table H-=3,
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Table 5-3.

Formulas for determination of the capaclitance of some

conductors formed by the intersection of two spireres.

e in
order

Conductor

name

diagram

Calculation formulas

Tw( inter-
secting
spheres at
w=7/3

R

The same,
at equal
radli of
spileres at
(w = n/3,
6 = n/6)

¢
]

\

Com dncs 25— -L-) - dita-1,3489

Vs

Two ortho-
gonally in-
tersecting
spheres at
w= 7/2

Cow #nsa(l + tgd—oln0) = dxs (n‘-e-b—w‘%_-ﬁ-)

The same,
at equal
radii of
spheres at
(w = /2,
8 = n/l)

A spher-
ical hole
at the or-
thogonal
intersec~
tion of
spheres

(w = 31/2)

f)

The same,
at equul
radii of
spheres

(w = 3n/2,
6 = w/l)
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Table 5=-3 (Continued).

& g Conductor
r4€ Calculation formulas
80 name diagram

7T Spherical
segment

at w =

= 3n/2 (8 =
= 7n/2)
(hemt-
sphere)

Com 4'1u¢'-8 (| --1-/!?) = dn1a.0,8488

Y., Three intersecting spheres (Fig. 5-17).

Fig. 5-17. Conductor formed by
the Intersection of three
Spheres.

If a conductor is formed by two identical spheres of radius a,
intersecting at an angle of n/3, and by a third sphere of radius b,
which intersects each of the identical spheres at right angles, then

| c.;4u.-[b+a(_:-f%y§);

—9 | S

ab( a4+ Va4
— -\, =21
+2Va__.+m)] (5-21)

AL ldentleal radll of all spheres (a = b)
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;W—VL'S'-) = 4mua- 1,4839, (5-22)

5. Ellipsoids.
a) Triaxial ellipsoid (a > b > ¢) (Fig. 5-18):

¢o-4.ﬂm'-‘-l/—;—:-(-'-'—(k-);-)—-, ) (5=23)

..k’f..l-(%)’. |

where
—— = arcsin l—(—‘-).;

\—'(2)’. . ‘

F(¢, k) is an incomplete elliptical integral of the first kind
(Appendix 1). '

If the semiaxes of an ellipsold are equal respectively to a,
a(l + a), a(l + a+B), and |a*B| < 1, then

Cotma-[14 440 +p>—15='(149+ﬁ')]. (5-24)

Example 5-1. To determine the capacitance of a conductor in the
form of a triaxial ellipsoid which 1s in distilled water (e ~ 83 eo),
if 1ts semiaxes are respectively a = 10 cmj; » = 8 cm, ¢ = V28 cm.

Using formula (5-23), let us predetermine the modulus and
argument of an elliptical incegral of the first kind F(¢, k).

At assigned dimensions




o

Fig. 5-18. Conductor in the
form of a triaxial ellipsoid.

From the table of elliptical integrals we find that
F(y, ) = F(5%°, V0,5) = 1,0.

Substituting the found value of F(¢, k) in formuia (5-23), we
obtaln

o.1- -8,35.10-® F = 835 pF

- 4§ d
Gt oior 1.09

b) Condensed spheroid (a = b > e¢) (Fig. 5-19):

C.-hm@. | (5-25)

Fig. 5-19. Conductor in the
form of a condensed spheroid.
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. (5-26)

Fig. 5-20. A conductor in
the form of a drawn out
spheroid.

6. Torus.

a) Torus of circular section' (Fig. 5-21):

' S AL
—f 8 A S
T .
% Qqy1 (che)
+2 P s kh.) » (5-27)
l-l--i-

!A more general case is that of a torus of oval section; how-
ever, the calculation of the capacitance of such a conductor [5-6]
requires preliminary tabulation of a number of speciali functions and
that is why it is not considered here.
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where
l | ]
’ _1 @
P"';'(Ch“) x ot d '
(che+shacosf)
~( )
Q.+_|f(ch¢) _ .+-}
(cha{shachf)

are Legendre functions of the first and second kind (see Appendix 1),
ch a = 1/a.

Fig. 5-21. A conductor of
toroidal form.

The numerical values of functiocn 00/4n£Z = f(a/l) are given in
Figo 5-22.

The following approximation formulas can also be used:

Go=sut |/ 1—() - (';—'+25§). (5-28)

where K, K', E, E' are complete elliptical integrals of the first

]/ P—a
and second kind (see Appendix 1) with modulus k"]%;vﬁ?;%?

B<1% at all <0,45),

Coxdxel. —= (5-293)
' xu(s-:»)
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B<1%at al <012 3<4% at all <0,30].
' Co =< 4= (0,68 + 1,07a/l) (5-30)
B<I% ¢ 21>030)

5 oo | o o.is 0.2
i 475 | : I 1%7 o.618 | 0.722 | 0.800 | 0.0
E_- | T (Continued)
B— 111 '
a
<+ |os]ow|os!ow
/
e //' -ﬁ% a.%02 | o992 | 1.0%o | ru0e
{ / ]
w )
// + |osjon]ew|on
" // | - [ faha] =l
a ' . (Continued)
ﬂ =
0 a7 aé § o/l o o | o | 10

>
‘ = 184 188 | 170

Fig. 5-22. Graph for determining capacitance of a
conductor of toroidal form.,

b) A torus without an opening (formed by the rotation of a
circle around a tangent) (Fig. 5-23):

.Ko
c‘='6'°"'17%d"- (5-31)

where Io(x), Ko(x) are Bessel functions of an imaginary argument
(see Appendix 1).

Co~ 4nea-1,7413528. (5-32)
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Fig. 5-23. Conductor formed
by rotation of a circle
arcund a tangent.

7. Cylinder of finite length (Fig. 5-24).

At 0 < 1/a < 8

Co==4ma [0.6372-]— 0,5535- (’5‘ ”.] (5-33)

18 <0,2%).

The numerical values of the function Co/4nea = f(l/a) are given
in Flg. 5-25.

At l/a > 10
c 4= - N
= —=—= . (5-34)
A a a\!
13 <543 ]
At L/a > 50
4rd
Cox—po. (5-35)
lnT-—l

Jee also clause 1 of § 3=2.

Fig. 5=-24. A conductor in
. the form of a cylinder of
; finite length.
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Fig. 5-25. A graph for determination of the
capacitance of a conductor of cylindrical
form.
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Table 5-4.

in the form of regular polyhedrons.

Upper and lower boundaries of capacitance of conductors

!

Conductor

Boundaries of values of the

quantity ¢, = Co/4nea (Co

i1s the capaclitance of the

No. conductor; 4wea 1s the capac-
in order Name General form itance of a sphere of radius
a, equal to the length of the
edge of a polyhedron).
1 Tetrahedron 4 0.748'< Cy/< 0. 90
0,6393'< C, < 0,6675,
2 Cube ? ! okxé .
(hexahedron) 4 217 e
3 Octahedron 0.59 <€, < 0,657
b Dodecahedron 0,5049 < C, < 0,5627

Icosahedron
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8. Regular polyhedrons.

Upper and lower limits of values of capacitances
in the form of regular polyhedrons are given in Table
of Table 5-4 are given in relation to the capacitance

radius equal to the length of an edge. The length of

of conductors
5-4.! The data
of a sphere with
the edge of

polyhedrons can be calculated from their assigned volume or area of

surfaces with the aid of the data given in Table 5-5.

Table 5-5. Geometric parameters of regular polyhedrons (a — length
of edge).
Number of Number
cgigﬁcggr boundaries and gg??;gze Volume
their form edge |VET-
g texes
Tetrahedron 4 triangles 6 b 1.7321 a® 0.1179 a®
Cube (hexa- 2 3
hedron) 6 squares 12 8 6.0 a 1.0 a
Octahedron 8 triangles 12 6 3.4641 a® 0.4714 o
Dodecahedron |12 pentagons 30 | 20 [20.6457 a? | 7.6631 o
Icosahedron 20 triangles 30 | 12 |6.6603 a® | 2.1817 4°

It is not without interest to observe the development of works

on determinatlion of the capacitance of a cube. There

is an assump-

tion [1-3], that the approximation value of the capacitance of a cube
was known already to Dirichlet; however, the main results on deter-
mination of the capacitance of a cube were obtained only in the last
two decades and are characterized by the following data:

. Polya, 1947-48 [5-7, 5-8], 0.62211 < C, < 0,7105.-

Gross, 1952 [5-10], Ci= 06464 |C, — 0,6464| < 0,032.
I. Mc-Maxon, 1953 [5-11], €; > 0,639273,
Daboni, 1953 [5-12], Ci< 0676

E. Parr, 1961 [5-15], G < 0,6675.

HEDPDEHOQQ

O~I OV W

Polya and G. Sege, 1951 [1-3], 0.632 < C, < 71055.
I. Higgins and D. K. Reitan, 1951 [5-9], Ci = 0,655.

Van Bladel and K. Mei, 1962 [5-16], Ci = 0,65565.

Comparison of these results leads to the data shown in graph 2

of Table 5-4,.

Furthermore, the capacitance of a cube was evaluated in the
works of L. E. Payne and H. F. Welnberger [5-13, 5-14].

187




5-4. Capacitance Between Two
Infinltely Long Shells

In the present section formulas, tables, and graphs are glven
for the determination of capacitance per unlt of length of conductors
that are infinitely long shells. These conductors are:

cylindrical shells of circular and an elliptical section; shells
having in a section an equilateral trlangle; shells of rectangular
and square sections; shells of regular n-angular sectlon; and circular
and arched shells.

1. Shells of etrcular and elliptical sections.

a) Shells of circular section.

Formulas for determinatlon of capacltance per unit of length
between infinitely long shells of circular sectlon are shown 1n

Table 5-6.

b) Confocal shells of elliptical section (Fig. 5-26)

C = 2t R ,
‘ Archﬂt"-'-“‘-.-ﬂﬂ lna,+V¢{_a (5-36)

wtVag-¢
where c’=a§-—b_¥=a§_b;,'

c) Coaxial circular and elliptical shells (Fig. 5-27).

.1 (5-37)
K—F@e "

where K and K' are complete elllptical integrals of the 1lst kind
(sece Appendix 1) with moduli

Ri—at R4 b8 VicF
kn R’+a’ R'—b‘ and k’- l_k..
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Table 5-6.

length between infinitely long c¢ylindrical shells of a circular sec-

tion.

Formulas for determination of capacitance per unit of

No.
in order

Location of shells’

Diagram

Calculation formulas

One of the shells
is inside the
other

Shells are coaxial
(cylindrical ca-
pacitor)

One of the shells
is outside the
other

The same, as
clause 3, with
equal radii of
shells

Two touching
shells inside a
third, the axis
of which coin-
cldes with the
line of contact
of the first
twe

Two ldentical
connected shells
inside the third
symmetrically
relative to its
axis

at MR, dKRY,
h’;' <C < 4;:

n—=- In —— oy

rd rVaryan
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F(¢, k) 1s an incomplete elliptical integral of kind I (see
Appendix 1) with modulus k and argument

[ arcsin(-;:—m_").

£03

4 @y
L s

Fig. 5-26. Fig. 5-27.

Flg. 5-26. Confocal shells of ellip-
tical section.

Filg. 5-27. Coaxlal c¢ircular and
elliptical shells.
d) Off-axial circular and elliptical shells (Fig. 5-28).

At p << ¢

- 2ne

C,:‘—

»
€ N 1 _ap [ chtapecostavy | sh3npu, sintny, (5-38)
By 22"‘”‘ g sl

L 3

wnere u, = Arch a/e = Arsh b/e, e = /a2 - bz, and the quantities Ho
and Vg are defined as the solution of the system of equations

2%y = cchp,co;v.;' 2yy = ashp.sinv..'

2. Shells having in a section an equilateral triangle (Fig.

. AY
H=-29).
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Fig. 5-28. Fig. 5-29.

Fig. 5-28. Coaxlal circular and el-
liptical shells.

Fig. 5-29. Infinitely long shells of
triangular section b = a tg 15° =
= 0.268 a.

Regardless of the dimensions of the sides

Cp="ts. (5-39)

3. Shells of rectangular and square sections.

a) Rectangular shells with parallel sides envélbping each ther

Y

_6,243[-:- +-“’—'+-§(ln-m—+ %arctg—}-l— -:—arctg-s-)]_.’

(5-40)

b) Rectangular shells with parallel sides not envelopling each
other (Fig. 5-31). '

The values of capacitance per unit of length ¢i the conductors
considered are given in Filg. 5-32.

Numerical values are determined with error of the order of 1%.
- Example 5-2. To determine the capacitance C between the sec-
tions of two parallel bars far from ends and in ethanol (g = 2650)

(Fig. 5-31), if a = 2 ecm; b = 4 em; d = 2 cm, and the length of
section 1s 1 = 5 cm.
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Fig. 5-30. Flg. 5-31.

Fig. 5-30. Coaxlal rectangular shells
with parallel sides. '

Fig. 5=-31. Rectangular chells with
parallel sides.

Gfdne-09

/ ;"0.5

T
AN
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. / Pl
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: L~ :
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f;//,fiﬁi::j’,fi::: 70
g
—

AN
X
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| s ..—-—-'3
_.__-=E'
32
34 5 6 7 8 9 o&

Flg. 5-32. A graph for determining capac-
itance per unit of length between two
rectangular shells.
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For assigned relations b/a = 2 and d/a = 1 with the aid of
Fig. 5-32 we find the capacitance of the sys*tem per unit of length:

C; o 474:0,9.0,35 = 3,960, '

The capacitance between the sections considered is obtained by
means of multiplication of the obtained value of ¢q b; th: length of
a section

- 6.96. — 1 .5.10~% = 4,58.10-"" F ~ 46 pF.
C = Cf = 39626 e 510 56 F A p

c) Square shells with parallel sides enveloping each other
(Fig. 5-33).

C,=8c%;’-,' (5-41)

where KO, K6 are complete elliptical integrals of the first kind
with moduli ko and kb = /1 - kg, respectively (see Appendix 1). The

modulus ho = (k, - k;/k, + k;)z, and the parameters k, and k; =
= /1 - k? are determined from the equation

Kk _oa .
K(p) d '

K(kz), K(k;) are complete elliptical integrals of the 1lst kind with
moduli ki and k; = /1 - k%, respectively (see Appendix 1).

J:r.

i_.uL.

Fig. 5-33. Coaxial square
shells with parallel sides.

2e
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The dependence k, = f(a/d) 1s given in Fig. 5-34.

7 e -

y

' -~

a5 a6

g7 48 a3 a/d

Fig. 5~34. Graph for determination of
parameter h, = f(a/d).

aid 0.5M63 | 0,005 | 0,63108 §0.67025] 0.71305) 0,80597 0,80085 |0, 33872

' 0.00) oo | oo | wes t o1 ] e "5 0.6
, i

aid 106093 st | 1,203 | 1,40300] 1, 76300 | 2,02080] 2,107 {2,77361

X, o8 0.9 0,H868 10,9747 | 0,994994 0,50%49 O.Mﬂb‘t),mSl

Example 5-3. To determine capacitance per unit of length for a
coaxlial transmission system with square transverse section of central
and external conductors (Fig. 5-33), if 2(a - d) = 1 ¢cm, 2a = 4 cm,
and Lhe dlelectric is alr.
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To determine the capaclitance of the system we find the ratio

LI
d
and with the aid of the curve of Fig. 5-34 we establish that
h‘-d,os; k;:VT:B.W-o.a

Using the obtained values of k, and k;, we obtain

From modulu: ko with the aid of Appendix 2 we find that
X com,
Ko

and from formula (5-41) we obtain

. ’
Cy = 0,61:8¢4 = ‘-_3'%—_

=432 pF/m.

d) Coaxial shells of the square section turned U5° relatively
to each other (Fig. 5-35).

At a = p

Crmbe. (5-42)
4, Shells of regular n-angular section (Fig. 5-36).

If the mutual location of the sections is such that their
centers coincide, the middles of the sldes of the external polygon
are placed against the vertexes of the interior polygon, and further-
more, the distance between these points is equal to b, then

Cy = 2n, (5-43)
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where n 1s the number of sides of each polygon.

Fig. 5-35. Fig. 5-36.

Fig. 5-35. Shells of square section
turned 45° relative to each other (b =
= 0,414 q).

Fig. 5=-36. Shells of regular n-angular
section (5 =-alg -:-) :

5. Infinitely long circular and arched shells.

a) Two coaxial arched shells of identical radius (Fig. 5-37).

C,ar;-ln(ctg—z--!-l/dg!_z__]). (5-4b)
At low ¢
s 4
C,a:-;- 'ln"—o

(5-44a)

b) A circular shell and two interconnected identical arched
shells coaxial with it (Fig. 5-38).

2=
i ——. (5-45)

T
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Fig. 5-37. Fig. 5-38.

Fig. 5-37. Two coaxial arched shells
of identical radius and length.

Fig. 5-38. A circular shell and two
intersected identical arched shells
coaxial with it.

5-5. Capacltance Between Infinltely
Long Shells and Plates

In the present section formulas, tables and graphs are glven

for determining the capacltance between conductors that are infinitely

long shells and plates.

They include a plate inside a shell of circular section; a
plate outside a shell of circular section; a plate inside and out-
side a shell of elliptical section; a plate inside a shell of

rectangular section; a circular disc and cylindrical shell of
circular section.

l. A plate inside a shell of circular section.

a) General case (Fig. 5-39).

.CIB“ 2’:' ’ (5_“6)

In—
9

where the parémeter q(0 < q < 1) 1s determined from the formulas
(4-49) and (4-50), in which the quantity A is replaced with
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and a = 2R sin ¢/2.

Fig. 5-39. A plate of finite
width inside an infinite
shell of circular section.

The numerical values of the function Cz/s = f(A2) are given in
Fig. 5-40. Values of A2 depending on b/d at various a/d are given

b) The plate is inside a sheil in a plane passing through its
axis.

The formulas for the determination of capacitance per unit of
length between the conductors being considered at different relation-

ship of thelr sizes are given in Table 5-7.

c) The plate i1s between two interconnected concentric circular
shells (Fig. 5-42).

At Ra = r'R/Ri

- 4K() - =
.c‘ Kl(‘) ’ (5 u7)

where K and K' are the complete and supplemenﬁary elliptical integrals

of the first kind (see Appendix 1) with modulus k = k:sn [pK'(k), k']
sn x 1s an elliptical sine (see Appendix 1), and
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i A0t

and k 1s determined from a transcendental equatlon

K@) _ 1R
K (k) 2:"'r"

2. Plate outeide shell of circular section.
a) The general case (Fig. 5-43).

Cimt = (5-48)
T .

where the parameter q(0 < q < 1) 1s determined from the formulas
(4-49) and (4-50), in which the quantity A 1s replaced with

1/( l’f){f 5

The values of A3 depending on b/d at various a/d are given in
Figo 5—uu|

and a = 2R s8in 4/2.

At b = » (shell and half-plane)

Numerical values of C’Z are found with the aid of the graph
given in Fig. 5-40.
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Fig. 5-43.

Circular shell
and plate of the finite
width outside 1it.

9 y ; 8 0 12

]

(Y]

Fig. 5-44, Graph for the determination
of the parameter A3 necessary®"in calcula-

tion of capacitance between a circular
shell and a plate of finite width outside

it.

b) Shell ia the cut of an infinite plane (Fig. 5-45).

- h .
C‘ac. T

g ——
e

(5-49)

where the paraneter q(0 < q < 1) 1s determjned from the formulas

(4-49) and (4-50), in which A is replaced Ry
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and a = 2R-sin ¢/2.

Fig. 5-45.' Circular shell in a
cut of an infinite plane.

The values of Au depending on a/d1 at various a/dz are given in
Fig. 5-46, and the numerical values of capacitance per unit of length
are found with the aid of the graph given in Fig. 5-40.

c) Plate in plane passing through axis of shell.
The formulas for the gétermination of capacitance'per unit of

length between the conductors being considered at different relation-

ship of their sizes are given in Table 5-T (see clause 1 cf the
present section).

3. Plate and shell of elliptical section.
a) Plate inside shell (Fig. 5-47).

If the edges of the plate coincide with the foci of an ellipse
(c =) & =0, then )

C o 2 =
J m_s_ ; (5-50)
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ds a d;

(/] i

A,
[
(-3

10 12 .4 dﬁ'

Fig. 5-46. Graph for determination of the
parameter Au necessary durlng calculation

of capacitance between a circular shell
and infinite plane, in the cut of which is
a shell.

Fig. 5-47. Infinitely
long elliptical shell and
plate inside it.

b) Plate outside shell.

Formulas for determinatlion of capaclitance per unit of length
between conductors considered are given in Table 5-8.
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4. Plate inside a shell of rectangular eection (Fig. 5-48).

"
Crm - i (5-51)

where the modulus of the complete elliptical integral of the first

kind K, (see Appendix 1) is

TP | CHL IO
11+ a0 (uy, R))-(1—s0 (65, 1)

w=(1—2F)K w=(1 —'2.%') K.

ot Fig. 5-48. 1Infinitely long
- o i elliptical shell and plate
"-"g inside 1it.
S |
= ]

The modulus k of an elliptical integral K and functions sn (u, k)

(see Appendix 1) is found from the equation

ALK 11
Tu—‘—-a-—‘—'ln—'-

or directly from the formula

d=Va i (L) oot

A=l |+'3l~| g=e

(The quantity k can be found from the assigned ratio h/7 with the
aid of Appzendix 2).

At the symmetric location of a plate (Fig. 5=-49)
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C:-«-f..’-. ~ (5-52)

where ko=3"(—:—|(: k). and modulus k is defined Just as above.

J Fig. 5-49. Shell and plate
“ I o | symmetrically arranged in-
: slde it.

Af2

When the section of the shell has square form, the formulas for
calculation of capacitance between the conductors belng considered
take the form shown in Table 5-9.

Example 5-U4. To determine the capacitance per unit of length
of the system shown in Fig. 5-48, if n/1 = 0.78; d/1 = 0.19;
d + b/l = 0.40, and the dielectric 1s air.

Solution. From the assigned ratio A/l = K'/K = 0.78 with the
aid of Appendix 2 we find that k® = 0.75; K = 2.16.

The values of elliptical sines which enter formula (:-51) can
be calculated directly from their tables, short extracts from which
are giver in Appendix 5, or from tables of elliptical integrals.
Let us make use in this case of the latter method.

Calculating the arguments of ellliptical sines, we have:

[ -(l - 2'0, lg)'z 16 » :,3‘;
g = (1 —2.0,40):2,16 = 0,43,

Turning then to the table contained in [Appendix 5), we find
that at u, = 1.34 and k% = 0.75 amplitude ¢, v 65°. Analogously
¢, X 240,

1
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Formula for determination of capacitance between a shell

of square section and a plate inside a shell in the plane of its

symmetry.
No. 1in Calculation
EhaoE Location of plate dlagrams Qalculation formulas
1 |Plate 1is in the ; A . S
plane of symmetry ' . K
passing through the
middles of the -1 where
opposite sides of a "%" .0 .
shell ,_’_g[m (u3: V05) = sn (ug; V0,5)]
[1 4 n (u: V0.8)]
X [l—lﬂ(ll'; v'oos)]o
'u.-(l—ﬂ%)-l((l/o,s). '
K (V0.5) = 1,85007,

= (l -2-’3—*“—‘).5'(1/3'5),

sn(u, k,) is an elliptical
sine (see Appendix 1)

2 The same, as in c,...«....'S..
clause 1, with S K
symmetric location
of plate ':.rt'.._ =) where _
t-m[x(Vo.xs)»—‘-_-uVﬁ.-s] -
3 |Plate in alagonal c-2 X 7
plane . K
where

POy n,;VT)Ts)-[z-cn(u.:Vﬁ)]-
n (ug; V0,8)- [2— en (u3: VOS)]
lﬁ-lfilﬂlqia~;%.
Vz.x(Vos -b.o_m.
n-ﬁ'l(m)-#.

en(u, h,) is an elliptical
cosine (see Appendix 1)

PRR—




[m-vwmvmmwm--

On the basis of formula sn u = sin ¢ we have:

$B u; = sin 65° = 0,906;
;g -'s.ln 4°* = 0,407.

We find then the modulus ko of elliptical integrels

20090640400
4 1+ 0,906 (1 + 0,0 ~ T

Then K, = 3.336, K6 = 1.579 and using formula (5-51) we obtain

o

c‘ - 2-3.85- 10'"' %% (J n‘. pF/m .

5. Cirecular disc and oylindriecal shell of circular section.

a) The shell is infinitely long and coaxial with the disc
(Fig. 5-50). '

side infinitely long shell of

) . " Fig. 5-50. Circular disc in-
el @ -———-
_ circular section.

The numerical values of the function C/4meq°0.9 = f(R/a) are
given in Fig. 5-51.

b) The shell is closed and is coaxial with the disc (Fig. 5-525.

The numerical values of the function C/4meqa’0.9 = f(R/a) at
various l/a are given in Table 5-10 and in Fig. 5-53.
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Fig. 5-51. Graph for d:utermination of capaci-
tance between an infinitely long shell of cir-
cular section and a circular disc inside it
(dotted line — extrapolaticn).

Fig. 5=52. Circular disc in-
side a closed shell of circular
section.

Table 5-10. Values of capaciﬁance between a
closed shell of circular section and a cir-
cular disc inside it.

—

Cc Maximum c Maxi c Haxiﬁm
R w09 | absolute | =% | ab solf:? fmoop | absolute
e error error! error
I:a = 0,25 a=0s T | lawl0

0,25 | 0,2848 | 0,00002 | 0,2251 0,0003 0,2072 0,000
0,50 | 0,847 | 0,0006 0,5790 .0063 0,5042 0,048
0,78 1,7618 | 10,0097 1,1563 0,036] 1,0050 0,198




G/ ne

Fig. 5-53. Graph for deter-
mination of capacitance be-
tween a closed shell of cir-
cular section and a circular

L disc inside it (dotted line -
7w extrapolation).
i
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5-6. Capacitc- Capacitance of Closed Shells

In the present section formulas, tables and graphs are given
for the determination of capacitance between conductors, at least one
of which 1s a closed shell.

The surfaces of conductors considered below are spheres (one
of which 1s inside or outside the other); confocal ellipsoids:
coaxial torl of circular section.

A separate group is made up of the systems formed by a sphere
or by a spherold inside shells or near infinite planes.

1. Two epheres.

a) Two concentric spheres (spherical capacitor), (Fig. 5-54)

R

R—r’

C =4dm.

(5-53)

Fig. 5-54. Two con-
centric spheres.

b) Two conconcentric spheres one of which is inside the other
(Figi 5-55) . ) !

t

- 3 gt |
¢~ m-zr-smlxt;ﬁj—,; . (5-54)

where

Rttt — P
l‘l’Ch——;‘——.
R}~

@R

@y ==

aq = Arch
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e

IS
“
A
[

At «'n B

Cotn B [1_R . L.
g'R--r ll g (R—1r) (R'—",] ) (5-55)

8 <02% when  dir <0,04, r/R <0,2).

Fig. 5~55. Two non-
concentric spheres one
of which is inside the
other.

¢) Two spheres, one of which is inside the other (Fig. 5-56).

C = 4xs-rR-sua-f(r, R, d), (5-56)

where

f(f. R’ d,= - 14
: 2 Rshnatrshin—1)a .

o' . )
an Rshna4rsh (n—1)a
R

_ 1. 1
T rdnatRsh(i—Ne datne i

e (24— (* + RY
a = Arch R .

Specifically, at »r = R

C=f2nRsh325—ﬁ"l—’. (5-562a)

where B = Arch %.
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Fig. 5-56. Two spheres
one of which 1is outside
the other.

The numerical values of the function I%E"f(%) at various values

of R/2d are given in Fig. 5-57.

i

- ' _lg - -‘ B

ul—5 gl— > § z
0 % é *"-i. N /] |
a - s L /# - 2
= e a7 //Ias ’

] // //ﬁi 3
a7 4 ,
. LA

| [ Y A

-
:

af

' {
0 af GF G5 aF G5 @5 @7 GF 45 o

Fig. 5-57. Graph for determination ;

of capacitance between two spheres,

one of which is located outside the |

other (dotted line - extrapolation).

AL R/8d << 1
R 1
cz“"r-i-n 1w (5-57)
d r+R

HH=Q@% when R/2d = rIR = 0,2},
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When R/8d << 1 and » = R

C~ ""R (5-57a)
3<0,24% when R/24 < 0,2].
2. Two confocal ellipsoids.
a) Triaxial ellipsoids (Fig. 5=58):
dxsd
= Fm-find’ | (5-58)

where F(¢, k) are elliptical integrals of the first kind (see
Appendix 1) with modulus.

and arguments

—————————

@ arcsi.'.‘ I / 1—(%:-)' s o= Aruin,l/:]:@:ij'—.

and

d=Va—g=Va—ad,la>b>el

Example 5-5. To find the capacitance of the air capacitor
formed by confocal triaxial ellipsoids the semiaxes of which are
a; = 5cm; by =3 cmy e, =2cmya, =7 cm; b, = V33 cm; e, = /28 cm.

2a
2o,
% Fig. 5-58. Triaxial
‘ RSN confocal ellipuoids,
IR A E
_____ I )
ANV '“%#
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To determine capacitance 1t 1s necessary to find in advance the
values of the elliptical integrals F(¢, k). We first compute their

modulus k and arguments ¢1 and ¢2:
. AI " _3.I. . .
l‘-l :')‘..l (:).-o.mo,
O B
& = aresin I/ l-—(%_-)"-w%'.

a=arcinl/ 1 (K?.)' A

Using then table [Appendix 4], we obtain
FiG A) = 1,3954; Fy(5s &) = 0,7632,

Substituting in formula (5-58) the numerical values of the
parameters entering it, we find the sought capacitance

C=1r = 4.
i Fi(zn B)—F:(5a &) 42.9-100 g
VE_%.10-? "
=08054. 10" p =8 pF,
X iAoz . #=8 pF

b) Drawn out spheroids (Fig. 5-59):

8z1-d".
= ’
'“ a-+d . ag—d
a—d o+4d

where d= V“f_:&-= lfa;—c} la=b<cl.

¢) Condensed spheroids (Fig. 5-60):

C’ =’-. luc-ii

- ]
arccos L — arccos
-1 O.

where

d=Va-d=)Vad=a [a=b>cl.
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Fig. 5-59. Drawn out Fig. 5-60. Condensed
confocal spheroids. confocal spheroids.

3. Coaxial tori of eircular section (Fig. 5-61).

ot (18] (1= s )]

In—
r

; "Qé;}__u-- 55 Fig. 5-61. Coaxial
j tori.

24

Having found capacitance per unit length (by dividing by 2nd)
r and having approached infinity, for two concentric circular cylinders

Zt_, which colncides with formula 2 of Table 5-6.

R
lnT

we obtain C-=-
4. Sphere inside a cube (Fig. 5-62).

Ca—’ =R ) . (5-62)

|- l.1476+._'_.°.-_‘§';_ ..g.
-‘-’-) — 234,63
- R

At a/R > 2.5 the capacltance of the system considered can be
calculated as the capacitance of a spherical capacitor (see 5-53),
the radius of the external plate of which is equal to 0.5722 a.
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Fig. 5-62. A sphere
inside a cube.

5. Sphere inside an infinitely long cylinder (Fig‘. 5-63).
C = dxsR-A,, (5-63)

where AO i1s determined from the infinite system of equations:

(2p)! Ay —

w+ye?
-h _ " - (—l)‘""R’"I(?"'l"?P' B) . A -&
3 T Ut Dt rnEt "R’

A= .
where
J(2ll+2p. a)-J {I84+% )
13 (ta)

Io(ta) - the Bessel function of an imaginary argument (see
Appendix 1).

’ ]9 1if 2040;
e {l. 1f 2p=0.

Fig. 5-63. Sphere
i inside infinitely
: long cylinder.

The numerical values of the function ——E—-f(Rla) is given

4212-0,9
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used:
Cox 4mR[l +0,8707 2 40,7581 (%)' +

+00601 (£)' + 05747 (=)' + 05004 (=]

1} < 1% when R/a <05].

in Fig. 5-64. The following approximation formula can also be

long cylinder.

b/e are given in Fig. 5-66.

long cylinder.
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-Qﬁna r
rip = Y] 02| o3 ] ou
80, —H p '
. .09 0,12188 | 0,20045] 0,45183]0,68308
40— ;
Z? = Jﬁ& -E- 0.5 0.6 0.7
&0 Tma.00 | 00002 [ leew? .umm
50 {} 0.8 o9 s
c : '
/ m 3,08518 54180 8, 70574
D / Fig. 5-64, Graph for
© / determination of the
. ’;,/’ capacitance of a sphere
inside an infinitely

6. Spheroid inside infinitely long cy!.nder (Fig. 5-65).

iy »* : '
b /{:l_ Fig. 5-65. A spheroid
o ¥ L inside an infinitely

(5-64)

The numerical values of C/4mea:0.9 = f{b/a) for two values of



" A
ba 0) 0.2 o3, (U8} Q/“ﬂ’ = '
e - 2
C _ 6or —-I- 1
12:4-0.9 1 16516 |0.47760) 0,65364]1.02710 0 ‘Ul
otinl s ]
T ” ©wl— 2
4r:a-0.9 1 900115 |0,21517]0,35318]0,52120 j
cor}%r'n'-xs. j ‘, /
ba 0.8 0.4 0.7
1w
[ ' . /
4=-a-0,9 " d
dm:n 1.53558 2,%6163 | 3,370 ) Q2 G4 08 a8 3
o out (1.2
c Fig. 5-66. A graph
1009 | 72038 o0 | 1400 for determination of
T the capacitance of a
S— spheroid inside an
e - 69 0.95 infinitely long cylin-
der: 1 - drawn out
. (the ratio of axes
; ¢ 1/2); 2 - condensed
1 i ol i - == (ratio of axes 2/1);
out (i dotted line -
extrapolation.
¢
4r1a-0.9 2,03299 3,36752 §.1468
condens, .
an

7. Sphere inside flat ring (Fig. 5-6T).

Fig. 5-67. Sphere
inside flat ring
("ring of Saturn").

At 1.5 < b/a < o

X .
Cdrs M) snfdt

dn? (arccos V-ll—;-—h) E—hkem? (arc;:t'zv-k-)t .
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where én u, cn u, dn u are elliptical functions (see'Appendix 1);

"=('§')'f,

The numerical values of function C/lUnéa = f(R/a) are given in
Figo 5-68c :

C/4x5a09
. 1 :
- 0.42 0.6t 0.78 0,90
|$ . . ‘
' c . 1.
20 : wmos | 0e2 | 122 ] 178 | 20
)
et |
15 =
/Z Fig. 5-68. Graph for
10} : v, : determination of the
' / capacitance of a sphere
inside a flat ring (at
b/a >°1.5) (the
//’ = dotted line - extrapola- .
¥ tion)c
[ G2 04 a6 a8 kRl

8. OSphere between infinite planes (Fig. 5-69).

! : ' Fig. 5-69. Sphere

between infinite
\ | planes.

At R/h not too close to 1,

cz°4un[1+ ﬁ|,-], (5-66)

where o = % 1n 2.
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At values of R/h comparable with 1,

C~4mR

R_3
A—-R ¢*

(5-67)

The approximation numerical values of the function C/lUneR =

= f(R/h) are given in Fig. 5-70.

C/4xeR

25

21

17 |

25

—

\

o
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Fig. 5-70. Graph for
determination of the
capacitance of a sphere
between infinite planes
(dotted 1line -
extrapolation).
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APPENDIX 1

SPECIAL FUNCTIONS USED TO CALCULATE
ELECTRICAL CAPACITANCE

1. Elliptical integrals.
The 1ntegrals

F(g, )= L Ele = \ VI Bamdy,
(v ).‘Sifﬁf:ﬁ;?- (5. &) S' sint ¢ d}

S o Tos G (1)
(3, n, k) ==
ub L3 5 (|+usinw)-}/|-kasmw

are called lncomplete elliptical integrals of the first, second,
and third kind, respectively. The quantity ¢ is called an argument
or amplitude, n a parameter, and k a modulus.

The number k==lfr:ﬁ; is called a supplementary modulus, and
integrals (1) with modulus k' are called supplementary integrals.
Frequently the quantity a = arc sin k is introduced, which is called
a modular angle.

B

At ¢ = 5 integrals (1) are called complete elliptical integrals
and are labeled '

.o ' =2
KekK®=l——B . Eaem=|Vi—pParidy
Vi—msinty ' .

(2)

T @
n . k = . .
&8 50+mW9V]—gmw
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Complete supplementary elliptical integrals are frequently marked
with a prime

K= K(K); E = EF) NV (n, =N, ¥

For the most frequently utillized complete elliptlcal integrals
of the first kind the followlng expansions are valld:

crpliele] o

(is used when k << 1);

K=ln—$;-§-.(l—;—)’-(h.n—£'——%)-k"+ . (4)
(is used when k = 1),

More detalled information about elliptical integrals 1s given
in [Appendices Literature 1-3].

The tailes of values ¥, K' and also K'/K and K/K' are given
in Appendix 2. More complete tables of elliptical integrals of the
first, second, and third kind are contailned in [Appendices Literature
4], and also in [Appendices Literature 3, 5].

2. Eili ptical funciions of Jacoby.

The function opposite to the elllptical integral of the first
kind is called an elliptical sine and is designated

ny = sh {u, k) = sing = slnemu.

Tt 2 overhead 1limit ¢ of an integral 1s called amplitude, and
the quantity u is called argument. The dependence of an argument
up r amplitude is written:

u = EIg9.

The functions
cnu = cos ¢ = cosamu,

dnu-—-Vl-—k'sin! =_"l
? -
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By definition
sntutcntad=1, dntu -kt s.n=1.4 =1; dnu—Atcntu = k'".

For ellipticsl functions the following ideas in the form of
exponential series are valid:

14kt l+Mm+M“L_

= — ]
e 51
EENT YUY YT NN
7 ' (5)
T R L Y O E X 1L L
cnu =1 2'u+ i u o —ut 4 ...
dnu-_-:l—i'-u'-}— Ma-th . KEQ6 41 kY F7 I
2t 4} . 6!.

The 2zeta-function of Jacoby 1s determined as an expression of
the form

zmm=sam—%me. (6)

where

B= arcsinl/ L=
. k!K

More detailed information about elliptical functions is con-
tained in [Appendices Literature 2, 3, 6]. Short extracts from the
tables of elliptical functions are given in Appendices 3 and 4. More
detailed tables of functions sn u, cn u, dn u are given in [Appendices
Literature 8], Part II, and of function K:Z(B, k) in [Appendices Lit. 3].
The graphs of the values of elliptical functions at three different
values of modulus are given in Appendices Figs. 1, 2, and 3.
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3. Theta-funetion.

Theta-function is defined as the sum of the series!

By (x) = 1 = 29 cos 2=x -} 2g%cos 4=x — 2%cosbrx + . . &
cor F (D" cos2mx 4 .. o (7)

where

’

K
qa‘-'“': -—,
’ K

The theta-function depends on two parameters - the argument x
and the modulus of elliptical integrals k since the latter determines
the values of q.

When q i1s close to one the expansion takes place

..(x);- QV(T'O--‘?- q’_‘-cfl;'+q“ chdr’ +q’Tch5x’+ .;.+
@asIp '

+¢ ' ch@Elx+...4, (8)

where

P‘:—'—; q’-.-."; x’--g-f.‘
? .
The short table of values of function %) 1is given in Appendix 5.
A graph of dependence of the parameter g upon k2 is given in Appendices
Fig. 4, and the values of function hh%-lﬂﬂ are given in Appendices

Fig. 5.
4, Bessel functions.

Linearly independent solutions of the Bessel equation of zero
order

du
_+u-o
dz

;

S du 1
T

1The given expression defines only one of the four introduced
Jacg?y theta-functions; for more detail see [Appendices Literature
2, L]
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are the functions

J.(z)n;(' )+ x ) - (—;-‘).

o 1. 1523 +".D (9)

(Bessel functions of the first kind of zero order) and
. . 1\
2 2 1 .\ (?I) T
N.(z)=-,,—[(z+ln-;)-'f(zn(?z)- o (i+—2-)+

()

*m(l+—':’—+_;-)-"']' (10)

where y = 0.5772157 is the Euler constant (the Bessel function of the
second kind of zero order).

The function
HY ()= Jy(2) + N, (D (11)

is called the Bessel function of the third kind or the Hankel function.

During calculations frequent use is made of the functions Io(z)
and Xg(z), connected with Jo(z) and H(')(z) by the dependences
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lo(@) = JoG2ki
(12)

Ko(e) = |5 HE Ga)

Functions I,(s) and Ko(é) are called the Bessel functions of an
imagirnary argument or the modified Bessel functions of zero order.
The function Ko(z) is known also as the MacDonald function.

Bessel functions are the topic of vast literature (see, for
example, [Appendices Literature (AL) 1, 7,9]), and they are completely
comprehensively tabulated [AL 5, 9, 10] (in [AL 8] the information
about tables 1is given).

5. Legendre functions of the first and second kind.
In the book Legendre functions with coefficient, equal to half

of an odd integer are used. These functions are linearly independent
solutions of the equation

. ' du .l
—d;--!-ctha?;-—(n'-—‘—)u-o (13)
and have the form
. ] ' ' . ) l : .
P |(Ch¢)--l— . d’ i
l-l'? L [T
i (chashacosy) 3
o .
Q |(°h¢)= T
"1 5 ha-shachy T . (L8

At n = 0 and n = 1 the Legendre functions are expressed through
complete elliptical integrals of the first and the second kind (see
clause 1 of this Appendix).

P, (cha) = 2V ¥ -K; Qy (cha) =2V ¥ K"
B ! (15)

2 . -2
Py, (cha) = »——E; Q,,, (tha)= —— (K’ —E"),
|+ ll( ﬂ). -vlh, l".‘,l V.’

where the modulus is
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More detailed information about the Legendre functions is given
in (AL 6, 8, 11], and tables of the functions with coefficient equal
to half of an odd integer are contained in [AL 12].

6. Psi-function.

The function ¥(z) is the logarithmic derivative of a gamma
function

e,
$@) T (16)

where
T(2) = I g,
o .

The function Y(z) satisfies the following functional
relationships:

petrh=tryen |
#(l;z)—l¢(z)=nctgu; (17) F
1;(2)+1a(z+-2—)+2ln2=2-;.(2z). ‘

Computation Y(z) at special values of z can be carried out
using the formulas:

q-(n+n'=—x+x-i—; A=l % ..

. (18)
_¢(n+%)=—1—2ln2+2§ 2&1'-1 sa=l 2.,

More detalled information about psi-function is given in [AL 8,
11]. The table of values $(1 + x) is given in Appendix 6.
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7. The zeta-function of Riemann.

The zeta-function of Riemann for Re z > 1 1s determined by the
formula

S &
S = 1)1‘(1)5 o, (19)

PL |
0 o

where I'(z) 1s a gamma function (see clause 6 of this Appendix).

A zeta-function satisfles the followlng functional relatlonships:

2L —2%0—2sin T = =L ),

r

2“"1‘(2):(:)«:033-2-—a:((l—.z); (20)

-z l—zy 2L
,r(%)-‘ ?:(z)=r( ;’)u T C(l—2).

Computation of ¢(z) at Re 2 > 1 can be carried out using the
formula

((2)=2:l,—. (21)

More detailed information about the zeta-function of Riemann
is given in [AL 6].

The table of values of ¢(x) is given in Appendix 7.
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APPENDIX 2
THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND
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K'/K
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1.69675
1.76237
1,70809
1,71389
1,71978
1,72577
1,73186
1,73805
1,71435
1,75075
1,75727
1,76390
1,77065
1,77752
1,78452
1,79165
1,79892
1,80633

1, 18607
1,17409
I. 16238
1,15091
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Continued.

ke K K’ K'/K KK oy
0,45 1,81388 1,.4892 1,04688 0,95522 0,55
0,46 1.82159 1,88953 1,03730 0,96404 0,54
0,47 1,82946 1,88036 1,02782 0,97293 0,53
0,48 1,83749 1,87140 1,01845 0,98188 0,52
0,49 1,84569 1,86264 1,00918 0.99090 "~ 0,51
0,50 1,85407 | . 1,85407 1,00000 _ 1,00000 0,50
Values of modulus c¢lose $o 0 and 1
0,000001 1,57080 | 8,29405 5,28016 0,18939 0,999999
0,000002 1,67080 | 7,94748 1 §,05952 0,19765 0,999998
0,000003 1,57080 7,74475 4,93046 6,20282 0,999997
0,000004 1,57080 7,60091 4,83888 0,20666 0,999996
0,000005 1,57080 7,48934 4,76786 0,20974 0,999995
0,000006 1,57080 7,39818 4,70082 0,21232 0,99999¢
0,000007 1,57080 7,32111 4,66075 0,21456 0,999993
0,000008 1,5708) 7,25434 4,61825 0,21653 0,999992
0,000009 1,57080° 7,19545 4,58076 0,21830 0,939991
0,000010 1,57080 7.14277 4,54722 0,21991 0,999990
0,000100 1,57083 5,99159 3,81427 0,26217 0,999900
0, 000200 1,57087 5,64512 3,59362 0,27827 0,999800
0,000500 1,57091 " | " 5,44249 3,46454 0, 0,999700
0,000400 1 57095 5,29875 3,37295 0,29548 0,999600
0,000500 1 .57099 5,18727 3,30191 0,30286 0,999500
0,000600 1,57103 5,00620 3,24385 0,30828 0,999400
0,000700 ,57107 5,01921 3,19477- 0,31301 0,999300
0, 000800 1,57111 4,95253 3,15225 0,31723 0,999200
0.000500 1,57115 4,89373 3,11474 0,32105 0,999100
0,001000 1,57119 4,84113 3,08118 0,32455 0,999000
0,001100 1,57123 4,79356 3,05084 0,32778 0,998900
0.001200 1,57127 4,75014 3,02312 0,33078 0,998800
0,001300 1,57131 4,71020 . 2,99763 0,33360 0,998700 -
0,001400 1,57135 4,67322 2,97402 0,33624 0,998500
0,001500 1,57139 4,63880 2,95205 0,33875 0,998500
0,001600 1,57142 4,60661 2,93149 0,34112 0,998400
0,001700 1,57146 4,57638 2,91217 0,34339 0,998300
0,001800 1,57150 4,54788 2,89396 0,34555 . | 0,998200
0.001900 1.57154 4,52092 2,87674 0,34762 0.998100
0, 1,57158 4,49535 2,86040 0,34960 0,998000
0,002100 1,57162 4,47103 2,84485 0,35151 0,997900
0,002200 1,57166 4,44784 2,83002 0,35335 0,997800
0,002300 1,57171 4,42569 2,81586 0,35513 0,997700
0,002100 1,571 4,40448 2,80231 0,356 0,997600
0,002500 1,57178 4,38414 2,78929 0,35851 0,997500
0,002600 1.57182 4,36161 2,77679 0,36013. 0,997400
0,002700 1,57186 4,3158] 2,76476 0,36170 0,997300
0.002800 1.57190 4,32769 2,75317 0,36322 0,997200
0,002900 1,57194 4,31022 2,74198 0,36170 0,997100
0,003000 1,57198 4,29334 2,73117 0,36514 0,997000
237
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APPENDIX U
FUNCTION {Z(B, kJ

e=1® a=15 | a=30° & = 15° o = 60° a=75° . =8P

(o .

£2=0,00030 | A= 0,075 ) %= 0,25000 | A?=0,50000 | &* = 0,7£000 | A? = 0,93301 | &* «- 6,99970
0° i 0,000000 | 0.000000 | 0.000CCO | 0,00(C00 0.¢0C000 | 0,000000
6° | o.000020 | 0,004688 { 0,018562 | 0.043766 | 0,082227 0.147228 | 0.386241
10° | o.00004' | 0.005238 | 0.037403 | o0.086448 | 0,162776 0.262070 | 0.768208
15° 000060 | 0.013513 | 0,054811 0,127626 | 0,235971 0.432134 1111623
20° | 0.000077 | 0.017387 | 0.07CG$6 | 0,164459 | 0,312138 0.565367 1.502217
25° | 0,000002 | 0.020743 | 0.0845%9 | 0.197748 | 0,377610 0.688264 1.845708
30° | 0.000104 | 0.023479 | 0.06103 | 0.225542 | 0,434726 0.769407 | 2.167788
35* | 0.000112 | 0.625510 | 0,101814 0,248154 0.4818% 0.8¢5883 | 2,464090
4" | 0.000118 } 0,056774 |} 0.710525 | 0.263583 } 0.517310 0.975016 | 2.730134
45° | 0.000120 | 0,027228 | 0.112924 0.271538 | 0,530547 1.033¢55 | 2.561210
50° | 0.000118 | 0.026855 | 0.111°09 | 0,271473 | 0,547C03 1.06c585 | 3,152208
§5° | 0.000113 | 0.025662 | 0.107447 0.263(28 | 0,536238 1.078357 | 3.297298
60° 1 0.000104 | 0,023683 | 0,05¢613 0.246077 | 0.512007 1,056317 | 3.389359
65° ,000092 | 0,02¢976 | 0.088594 0,220781 0.487411 0.598480 | 3.418883
70%. | 0,000077 | 0.017619 | 0,074656 | 0.187640 | 0,4C4143 0.£5¢033 | 3.371563
75° | 0,000060 | 0.013718 } 0.058332 § 0,147536 | 0,372654 0.751288 |} 3.22428
- 80° | o0,000011 | 0,000350 | 0.04c018 | 0.101748 | 0,22558 0.544278 | 2917759
85° | 0.000021 | 0.004769 | 0,020354 0.051923 | 0.11612 0.293208 | 2,291948
0° X 0,00C000 | ©0,000000 | ©,(CCOCO 0.C0C0C0 0,000000 | 0,000000
APPENDIX 5
FUNCTION 8,(x)
a=0° a=9° a=18° o =21 -3
2%

K = 000000' | £? = 0,02047 | £? = 009549 | 4? = 020611 | A0 = 034500

0000 0,9970 0,9874

. 0,0 1 0,9712 0,9471
0,1 1,0000 © 0,9970 0,9881 0,9725 0,997
0.2 1.0000 0,9975 0,9599 0,9768 0,952
0.3 1,0000 « 0,9982 0,9927 0,9831 0,9683
0.4 1,0000 0.9991 0,9961 0.9911 0,988
0.6 1,0000 1,0000 d 1.0000 1,0000
0.8 1.0000 1,601 1,004 1,009 1.018
9,7 1,0000 1,002 1,007 1,017 1,031
0.8 1,0000 1,003 1.010 1,023 1,043
0.9 1,0000 1,003 1,012 1,028 1.050
1.0 1,0000 1,003 1,013 1.029 1,053

. = 45° &~ 54° a 63> e =72 e =81°
2

&= 0,50000 | &* -~ 0,65151 k?:- 079330 | &'~ 090451 | A® = 097553

=o5cs000005
DOPYRNARDN~O

0,9136 0,8680 0.8052 0.7152 0.56M
0,911 0,8744 0,8147 0.729%0 0,5598
0,9300 0,8031 0.8424 0.7691 0.819%4
0.94493 01,9223 0,R853 0,7080 0,148
0.9732 0.9592 0,937 0.9110 0,869
0000 1, 0000 1,9999 1.992 0.958 °
07 8041 1,060 1.088 .l
1.051 1,078 1,115 1,168 1.254
1,070 1.107 1.158 1.23 1.353
' 1.126 1,186 1.212 1.47
1.086 1,132 119 1,286 1429
2h1
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